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Dihydrobenzofurans, dihydrofurocoumarins and dihydrofuroflavonoids occur commonly in
plants and fruits and are very important because of their pronounced biological properties.
Existing methodology for the synthesis of these classes of natural products suffer from low
yields and limited scope. In this dissertation a new efficient heteroannulation approach to
various natural products via palladium-catalyzed annulation of 1,3-dienes by 3-iodo-2-alkenols,
2-iodo-2-alkenols, and acylated o-iodophenols is presented. Preliminary studies using o-
iodophenols revealed a major problem with rapid dehalogenation. To solve this problem, we
have developed “optimal” reaction conditions using acetoxy derivatives. The presence of the
acetyl group on the phenolic oxygen and the use of silver carbonate as a base are crucial for this
process. This reaction is very general, regio- and stereoselective, and a wide variety of terminal,
cyclic and internal 1,3-dienes can be utilized. This new methodology can be utilized for the
synthesis of various substituted dihydrofuroumarins, dihydrofuroflavones, and

dihydrobenzofurans.
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GENERAL INTRODUCTION

The palladium-catalyzed heteroannulations are of a great utility for organic synthesis.
These transformations are very general, regio- and stereoselective and allow a rapid assembly
of fairly complex heterocyclic systems. Importantly, palladium-catalyzed transformations
tolerate moisture, oxygen and a wide variety of functional groups.

During last 20 years the Larock research group has developed a number of new
palladium-catalyzed annulations of alkenes, alkynes and dienes. This dissertation is focused
on the development of heteroannulations of 1,3-dienes by various vinyl- and aryl iodides and
application of this methodology for the synthesis of natural products and their close
analogues. This dissertation is organized into four different chapters that are published or
will be published shortly. The author of the dissertation is a primary investigator and author

of each of the papers reported in the thesis.

Dissertation organization

This dissertation is divided into four chapters. Each of the chapters is written according
to the guidelines for a full paper in the Journal of Organic Chemistry and is composed of an
abstract, introduction, results and discussion, conclusions, experimental, acknowledgments,
and references.

Chapter 1 describes the palladium-catalyzed annulation of 1,3-dienes by vinylic halides.
The presence of a f-hydrogen in the vinylic halide results in f~hydride elimination giving the
corresponding alkyne. The presence of a bulky group in the a-position of the vinylic halide

results in failure or deceleration of the annulation. Despite the limited scope, our studies

provides a deeper insight into this process.



Chapter 2 is a publication that presents a synthesis of biologically active
dihydrofurocoumarins via palladium-catalyzed heteroannulation of 1,3-dienes by o-
iodoacetoxycoumarins. Preliminary studies using o-iodophenols revealed a major problem
with rapid dehalogenation. To solve this problem, we have developed “optimal” reaction
conditions using acetoxy derivatives.  This reaction is very general, regio- and
stereoselective, and a wide variety of terminal, cyclic and internal 1,3-dienes can be utilized.
Derivatization of the annulation products provides an efficient approach to numerous
analogues of natural products.

Chapter 3 is focused on synthesis of dihydrofuroflavonoids via palladium-catalyzed
annulation of 1,3-dienes. Dihydrofuroflavonoids occur commonly in plants and fruits and
are very important because of their pronounced biological properties. Despite significant
interest, no efficient, general method for the synthesis of dihydrofuroflavonoids has really
been developed. Our annulation methodology provides a convenient and efficient approach
to a wide variety of functionalized flavonoids.

Chapter 4 concerns synthesis of dihydrobenzofurans via palladium-catalyzed annulation
of 1,3-dienes. The annulation of electron-rich o-iodophenols in earlier studies has been quite
problematic due to the undesired dehalogenation. The application of our methodology led to
the development of an efficient and general approach to dihydrobenzofurans. This reaction is
very general, regioselective, stereoselective and a wide variety of terminal, cyclic and
internal 1,3-dienes as well as electron-rich and electron deficient o-acetoxyiodobenzenes can
be utilized.

Finally, all of the 'H and *C NMR spectra for the starting materials and annulation

products are compiled in appendices A-D.



CHAPTER 1. PALLADIUM-CATALYZED HETEROANNULATION

OF 1,3-DIENES BY VINYLIC HALIDES

Roman V. Rozhkov and Richard C. Larock

Department of Chemistry, lowa State University, Ames, lowa 50011

Abstract
Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-
alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines
respectively. The presence of a f-hydrogen in the vinylic halide results in fhydride
elimination giving the corresponding alkyne. The presence of a bulky group in the a-
position of the vinylic halide results in failure or reduced amounts of annulation products. A

chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

Introduction
Annulation processes are among the most efficient transformations in organic synthesis."

We have recently developed in our laboratories annulations of 1,3-dienes using o-
iodophenols (1),2 o-iodoanilines (2)° and a-iodoalkenoic acids (3),* which allow an efficient

approach to heterocycles 4, 5 and 6 respectively (eqs 1-3). This reaction proceeds through

oxidative addition of the aryl or vinylic halide to Pd(0), followed by 1,2-addition to the 1,3-



diene and formation of a stable sallylpalladium complex. The next step involves
coordination of the palladium to the hydroxyl or amino group present in the z-allylpalladium
moiety, followed by the reductive elimination. Herein, we report the palladium-catalyzed
annulation of 1,3-dienes by certain other functionally-substituted vinylic halides.

5% Pd(OAc), o
OH

. PPy 2NaHCO @:)‘\\_ (1)
n-BuyNCl . R

1 DMF, 60 °C

5% Pd(OAc),

Ts
N
NHTs 5 NaHCO;,
—_— VY 2
+ PR nBuNCI \_ ¥
5

I DMF, 60 °C

10% Pd(OAc),
20% D'BPF

5 NaHCO
>:< + MR3 —-—3>
n-BuNCl  R2? O (3)

3 DMF, 60 °C _

Results and Discussion

Initially we selected vinylic halide 7 and 1,3-cyclohexadiene as model substrates for our
optimization work. According to our previous results, the best reaction conditions for the
annulation of 1,3-dienes by o-iodophenols are o-iodophenol (0.5 mmol), diene (2.5 mmol),
Pd(OAc), (0.025 mmol), Na,CO; (1.0 mmol), LiCl (0.5 mmol), DMF (5 mL) as a solvent at
100 °C for 3 d (eq 1).2 Unfortunately, under these conditions the reaction failed to give any
of the desired annulation product and 90 % of the starting material was recovered. When the
temperature was raised to 120 °C, only traces of the desired cis-product 8 were isolated
(Table 1, entry 1). The addition of triphenylphosphine (15 mol %) gave ether 8 in a 5 %

yield and Heck-products 9 and 10 in a combined 10 % yield (entry 2).



5% Pd(OAc), N o Ph on N OH
Ph o 10% PPhj | I |
H + +
\f 4 . )
| Na,COj,, LiCl
8 9 10

DMF, 120 °C
7

Table 1. Optimization.?

entry catalyst phosphine, % yieldof 8 % yield of 9+10 % recovery of 7

(mol%)
1 Pd(OAc), - trace - 30
2 Pd(OAc), 15 6 10 26
3 Pd(dba), 10 10 13 15
4 Pd(PPhs), - 14 16 15
5 PdCl,(PPhs), - 4 trace 15

*Reaction conditions: vinylic iodide 7 (0.5 mmol), 1,3-cyclohexadiene (2.0 mmol), palladium

catalyst (5 mol %, 0.025 mmol), LiCl (0.5 mmol), DMF (5 mL), 120 °C, 24 h.

Next we examined the effect of various palladium(II) catalysts on the annulation reaction
(Table 1). Although Pd(PPhs)s gave the best yield (entry 4), separation of the annulation
product was complicated by the presence of numerous side products. Moreover, the presence
of four strongly coordinated ligands on the palladium atom retards formation of the presumed
reactive Pd(PPh;), intermediate and limits the possibility of utilizing other phosphine ligands.
As one can see from Table 1, the presence of the phosphine increases the yield of the
annulation product.

Then we investigated the effect of the phosphine on the annulation reaction (Table 2). As
one can see from Table 2 (entries 1-4), an increase in the phosphine concentration does not

significantly effect the yield of the desired product 8. According to recent reports,



MeO MeO =
Q\P(t-Bu)z
P( )3 P( OMe)3 Fe P(t-Bu);
MeO MeO @
11 12 13 14

Figure 1. Phosphine ligands.

Table 2. Effect of Phosphine.”

entry  catalyst phosphine % yield of 8 % yield of 9+10 % recovery of 7

1 Pd(dba), 10% PPh; 8 13 16
2 Pd(dba), 15% PPh; 10 15 20
3 Pd(dba),  20% PPh; 10 30 32
4 Pd(dba),  25% PPhs 14 20 17
5 Pd(OAc), 15% 11 10 14 30
6  Pd(OAc), 15% 12 12 18 25
7  Pd(OAc), 15% 13 7 15 20
8  Pd(OAc), 15% 14 trace trace 45
9 Pd(dba), 10% 11 9 9 25
10  Pd(dba), 10% 12 16 10 46
11 Pd(dba), 10% 13 15 10 18
12 Pd(dba), 10% 14 trace trace 41

*Reaction conditions: vinylic iodide 7 (0.5 mmol), 1,3-cyclohexadiene (2.0 mmol), palladium
catalyst (5 mol %, 0.025 mmol), LiCl (0.5 mmol), DMF (5 mL), 120 °C, 24 h.

the electron rich and sterically hindered phosphines 11-14 greatly increase the rate of

oxidative addition of vinylic and aryl halides to palladium(0) and prevent undesired



chelation.” According to our results, phosphine 12 gives the best results with both Pd(OAc),
and Pd(dba), (entries 6 and 10). We have also found that Pd(dba), works better than
Pd(OAc), for most of the studied phosphines (entries 5-8 versus entries 9-12).

The choice of base can often play an important role at various stages of organopalladium
reactions. First, it promotes the elimination of HI and generation of the palladium(0)
complex. Second, the base should deprotonate the hydroxyl group in our reaction and
activate it towards nucleophilic attack on the n-allylpalladium complex. Therefore, in our
next set of optimizations, the effect on a yield of a wide range of organic and inorganic bases
was investigated (Fig. 2). As one can see from Table 3, the base has a dramatic effect on this
reaction and the organic bases give a better yield of the product 8 than the inorganic bases.
This is presumably due to the ability of the pyridine bases to act as both a base and a ligand.
In fact, removal of the phosphine from the reaction mixture results in only a slight decrease
in the annulation yield (entries 8 and 9). The presence of sterically demanding groups in
positions C-2 and C-6 of the pyridine ring inhibits coordination of the pyridine to the
palladium and decreases the annulation yield (entries 10 and 11). Removal of the chloride
source results in a sharp decrease in the reaction yield (entry 12). On the other hand, the
substitution of LiCl for n-BuNCl (entry 13) does not effect the annulation yield
significantly. This indicates that the nature of the cation is not important for this reaction.

Presumably, the chloride anion prevents undesired chelation and, therefore, increases the

Me Me NMe, CN

o 0000, O'OL O
~ ~

Me” “NZ Me t+Bu” N7 MtBu N7 N” “NMe, N7 N"CN S\

19 20 21

15 16 17 18
Figure 2. Pyridine bases.



Table 3. Effect of the base.?

entry base % yield of 8 % yield of 9+10 % recovery of 7
1 Na,CO; 16 10 46
2 K,CO; 8 7 10
3 NaHCO; 13 7 34
4 KHCO;4 5 6 28
5 NEt; 23 6 23
6 EtN(i-Pr),; 35 7 54
7 Py 52 6 40
8° Py 60 7 10
gbe Py 50 6 4
10°° 15 40 15 7
11> 16 36 25 10
124 Py 15 trace 50
13%¢ Py 63 trace trace
14> PhNMe, 53 trace 5
15 17 34 trace 30
16 18 48 trace 8
17° imidazole 10 trace 70
18 19 70 trace trace
19 20 65 trace trace
20 21 63 trace trace
21 19 45 trace 25
2208 19 43 trace trace

Reaction conditions: vinylic iodide 7 (0.5 mmol), 1,3-cyclohexadiene (2.0 mmol), Pd(dba), (5
mol %, 0.025 mmol), Ehosphine (5 mol %, 0.05 mmol), base (0.75 mmol), LiCl (0.5 mmol), DMF (5
he reaction time was increased to 48 h. “No phosphine was added.

chloride source was added. °#-Bu,NCl was used as a chloride source. ‘The temperature was

mL), 120 °C, 24 h.

T

decreased to 80 °C. ®The temperature was decreased to 100 °C.



reactivity of the vinylic palladium intermediate. The use of N, N-dimethylaniline (entry 14),
which has a basicity similar to pyridine, gives a yield similar to the unsubstituted pyridine
(entry 9).

The use of electron-rich 2- and 4-(dimethylamino)pyridines (entries 15 and 16) decreases
the yields of the annulation reactions to 34 and 48% respectively. Highly basic imidazole
(entry 17) inhibits the reaction. Pyridines with an electron-withdrawing substituent are
superior among all investigated bases (entries 18-20) and 3-cyanopyridine is the most
effective base among all the bases investigated.

The high temperature employed in this reaction can course evaporation of the 1,3-diene
and thermal decomposition of the vinylic halide and the product of the annulation. But when
we decreased the temperature to 80 and 100 °C (entries 21 and 22), the reaction slowed down
and the yield dropped from 70% to 45% and 43% respectively. After optimization of the
base, we again optimized the phosphine ligand employed with 3-cyanopyridine (Table 4).

It can be seen from Table 4 that variation of the ligand does not improve the yield of the
annulation product. The yields in entries 1-4 are similar to the yield of the reaction without
any phosphine (Table 3, entry 9). Bidentate ligands, such as dppe and phenanthraline
(entries 5 and 6), inhibit the annulation process. Based on these results, our “optimal”
conditions for the annulation reaction (Table 3, entry 18) are vinylic halide (0.5 mmol), 1,3-
diene (2.0 mmol), Pd(dba), (5 mol %, 0.025 mmol), phosphine 12 (10 mol %), 3-

cyanopyridine (0.75 mmol), LiCI (0.5 mmol), 5 mL of DMF at 120 °C for 24 h (eq. 5).



10

(t-Bu),P
22 23

Figure 3. Phosphine ligands.

Table 4. Optimization of the phosphine ligand with 3-cyanopyridine.?

entry ligand % yield of 8 % yield of 9+10 % recovery of 7
1 13 53 15 10
2 22 54 13 16
3 23 60 trace traces
4 PPh; 53 trace 10
5 dppe 5 trace 75
6 1, 10-phenanthroline - - 90

"Reaction conditions: vinylic iodide 7 (0.5 mmol), 1,3-cyclohexadiene (2.0 mmol), Pd(dba),
(5 mol %, 0.025 mmol), ligand (10 mol %, 0.05 mmol), LiCl (0.5 mmol), 3-cyanopyridine (0.75
mmol), DMF (5 mL), 120 °C, 24 h.

5% Pd(dba), Ph 0

Ph OH © 10% phosphine 12 |
4 5
\El\ * 3-cyanopyridine, LiCl ®)
7

DMF, 120°C, 24 h
8 70%

Next, the annulation of various 1,3-dienes using the model vinylic halide 7 was
investigated. The annulation of methyl 2,4-hexadienoate (24) gives the desired product 25 in

only a 29% yield (eq. 6).
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Ph
Ph 5% Pd(dba), | o)
| OH 10% phosphine 12 (6)
* AN 0o Me = Z” "COMe
3-cyanopyridine, LiCl
7 24 DMF, 120°C, 24 h 25 29%

Unfortunately, dienes 26-37 (Figure 4) do not undergo the desired annulation by vinylic

iodide 7 and only trace amounts of vinylic halide 7 was recovered.

© & /> g Z " ph /\)\
26 27 28 29

30

|
= N~ NN
/\(‘H1 “ © l?l (@] MCOZMG
31

Me
32 33 34 35
o MeO OMe
NSO
36 37

Figure 4. 1,3-Dienes investigated.

Since very few 1,3-dienes have been successful in this process, we investigated the
annulation of 1,3-cyclohexadiene with various other vinylic halides. The introduction of a
sterically hindered trimethylsilyl or phenyl group in the C-3 position of the 3-iodo-2-
propenols 38-42 results in a complete failure of the annulation reaction. Vinylic halide 43
does not give the desired annulation product, although the starting material completely
disappeared within 24 h. This is, presumably, due to rapid palladium S-hydride elimination
of corresponding vinylpalladium complexes rather than addition to the 1,3-diene. This
suggestion has been confirmed when the annulation of vinylic halide 44 gave fhydride
elimination product 3-phenyl-2-propynol in a 45% yield. The annulation of 1,3-

cyclohexadiene by vinylic bromide 45 or triflate 46 does not give the desired product and
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over 60% of the corresponding starting material was recovered. This could be due to the low
reactivity of the vinylic triflates and bromides in the oxidative addition process under our

reaction conditions.

Ph
X 1% ; S ﬁ“ L
Me;Si Me;Si

R &
| Ph | OTf
43 44

Figure 5. Vinylic halides investigated.

One can assume that 2-iodo-2-alkenols will react more readily than 3-iodo-2-alkenols due
to the more favorable formation of a 5-membered ring over a 6-membered ring. In fact,
vinylic halide 47 gives the corresponding annulation product 48 in a 23% yield (eq 7).

5% Pd(dba), Me
M © 10% phosphine 12 0
3-cyanopyridine, LiCl Ph (7)

p
DMF, 120°C, 24 h

47
48 23%

Since intramolecular nucleophilic attack of the internal nucleophile on the =
allylpalladium intermediate is an important step in our annulation, the reaction rate can be
presumably enhanced by increasing the nucleophilicity of the group displacing the palladium
moiety. Therefore, we substituted an amino group for the hydroxyl group and investigated

the annulation of 1,3-cyclohexadiene with 2- and 3-iodo-2-alkenamine derivatives (Table 5).
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Table 5. Annulation 1,3-Cyclohexadiene by Vinylic Halides.?

entry  vinylic halide base phosphine % yield of the % starting
product material
recovered
Ph \(\NHTS 12 19 0 0

1 I

49
2 12 - 0 0
3 Na;COs 19 0 0
4 NaHCO; 19 0 0
5 NaOAc 19 0 0
6 NEt; 19 0 0

Ph

Ph
7 r\NHTS 12 19 0 55
Ph |
50
NHTs NTs
>=(\ 12 19 23

8 |

S1

52,31%

Me NHTs
9 >=<‘ 12 19 0 25
Ph |
53
NHBu
10 >=<I— 12 19 0 20
54

"Reaction conditions: vinylic iodide (0.5 mmol), 1,3-cyclohexadiene (2.0 mmol), Pd(dba),
(5 mol %, 0.025 mmol), phosphine 12 ( 10 mol %), LiCl (0.5 mmol), 3-cyanopyridine (0.75
mmol), DMF (5 mL), 120 °C, 48 h.

Unfortunately, tosylamide 49 does not affect the annulation of 1,3-cyclohexadiene (entry 1).

Several attempts to optimize reaction conditions by employing various bases or removing the
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phosphine ligand failed (entries 1-6). Annulation using more sterically hindered tosylamide
50 failed as well. Only tosylamide 51 gives the desired product 52 in a 31% yield. This can
be rationalized by kinetically favorable formation of the 5S-membered ring compared to a 6-
membered ring. The annulation using vinylic halides 53 and 54 does not result in the
formation of any of the expected annulation products.

A proposed mechanism for this annulation process, based on our experimental results and
previously reported mechanistic investigations of palladium-catalyzed reactions by Amatore®
and Crisp’, is shown in Scheme 1. The process starts with oxidative addition of the vinylic
halide 7 to anionic palladium intermediate 55 formed in situ, which affords complex 56.
The positive effect of pyridine can be explained by reversible displacement of phosphine
ligands by pyridine and formation of a less sterically hindered and more reactive intermediate
57 towards insertion of 1,3-diene. Coordination of 1,3-cyclohexadiene to the intermediate 57
gives complex 58, which then undergoes alkene insertion to produce first a g-allylpalladium
complex and then s-allylpalladium complex §9. Next, coordination of the oxygen atom to
the palladium center gives complex 60. After reductive elimination, the final product 8 and
anionic intermediate 61 are formed. Front-side attack on the palladium center is confirmed
by the presence of cis-stereochemistry in the final product 8. Finally, the anionic
intermediate 61 undergoes exchange of a pyridine ligand by phosphine and eventually
regenerates the anionic complex 55, which is presumed to be more reactive towards oxidative
addition. This is consistent with a 15-20% decline in the yield when phosphine is removed
from the reaction. The presence of a chloride source is essential for the formation of reactive
intermediate 55 and prevention of intramolecular chelation that generates less reactive

complexes like 62 and 63.
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Scheme 1

Ph CIPdL, |

7
@ / ss N
Ph Ph
+ - \fOH L \Il/\o
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oy /61 oL V szL
56 \2 Py

~ Pd.
py/ Py Py/ Py
63 57
60 .
Py ‘
\ Ph oH ©
| ¢

58

Conclusions
The palladium-catalyzed heteroannulation of 1,3-dienes by 2- and 3-iodo-2-propenols
and their amino-analogs gives corresponding cyclic ethers and amines. The reaction
proceeds with good stereoselectivity and affords in most cases cis-product. Unfortunately,
this heteroannulation process lacks generality and, therefore, its usefulness for practical
purposes is limited to 1,3-cyclohexadiene and several less hindered vinylic halides. There

are also some limitations on the vinylic halide. For example, the presence of a hydrogen

atom in the S-position of the vinylic halide results in fhydride elimination that gives the
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corresponding alkynes. Sterically demanding groups on the vinylic halide lead to complete

inhibition of this reaction.

EXPERIMENTAL SECTION

General. All 'H and C NMR spectra were recorded at 400 and 100.5 MHz respectively.
Thin layer chromatography (TLC) was performed using commercially prepared 60 mesh
silica gel plates (Whatman K6F), and visualization was performed with UV light (254 nm)
and an acidic KMnOQOj; solution.

Reagents. All reagents were used directly as obtained commercially, unless otherwise
noted. Pyridine, DMF, DMA, THF, hexanes, ethyl acetate, chloroform and ethyl ether were
purchased from Fisher Scientific. The palladium reagents Pd(OAc),, Pd(PPh3)s, and
PdCI,(PPh;), were donated by Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., Ltd.
Phosphines 11, 12, and 23, pyridines 15-21 and the 1,3-dienes 1,3-cyclohexadiene, 24, 26-28,
30-37 were purchased from Aldrich Chemical Co. Inc. Phosphines 13, 14, and 22 were
purchased from Strem Chemical Co. Inc. The palladium catalyst Pd(dba),,? 1,3-diene 29 and
vinylic halides 7,” 38,'" 39,'° 40,° 41,'2 42.° 43, 44,° 45,* 46,"° 47,'° 49, ' 50, '° 51,6 52, ¢
53, '6 54'¢ were prepared according to literature procedures. A better overall yield of the
vinylic halide 7 was achieved by adding phenylmagnesium bromide to 3-
(trimethylsilyl)propargylic alcohol,!” followed by quenching with I, and subsequent
desilylation.'®

General procedure for the Pd-catalyzed annulation of 1,3-dienes by vinylic halides.
The vinylic halide (0.5 mmol), Pd(dba); (5 mol %, 0.025 mmol), phosphine ligand 12 (10

mol %), LiCl (0.5 mmol), 3-cyanopyridine (0.75 mmol) and DMF (5 mL) were stirred in a
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capped vial for 5 min, and then the 1,3-diene (2.0 mmol) is added. The resulting reaction
mixture is stirred at 100 °C for 24 h, cooled to room temperature, diluted with ethyl ether and
then washed with satd aq NH4Cl. The ethyl ether is evaporated and the resulting residue is
purified by column chromatography using silica gel as a solid phase and 8:1 hexanes/ethyl
acetate as the eluent to afford after solvent removal the final product. The following new
compounds have been prepared using this procedure.
cis-3-Phenyl-4a,5,6,8a-tetrahydro-2H-1-benzopyran (8). Obtained in a 70% overall
yield, recrystallized from 1:1 ethanol/water: white solid, mp 75-76 °C; 'H NMR (CDCl;) 6
1.50-2.35 (m, 5H), 3.90-4.10 (m, 1H), 4.53 (d, J= 15.8 Hz, 1H), 4.57 (d, J = 15.8, Hz, 1H),
5.80-5.95 (m, 1H), 6.00-6.10 (m, 1H), 6.15 (d, J = 2.8 Hz, 1H), 7.30-7.40 (m, 5H); *C NMR
(CDCl3) 6 24.8, 25.6, 34.9, 67.1, 69.1, 125.1, 126.1, 126.2, 127.7, 128.7, 133.3, 136.1, 138.4;
IR (neat) 3022, 1595 cm’!; elemental analysis: found C, 85.44; H, 7.86 (calcd for C;5H;¢lIO,

C, 84.87; H, 7.60).

6-(E-2-trans-Carbomethoxyethenyl)-5-methyl-3-phenyl-5,6-dihydro-2 H-1-pyran
(25). Obtained in a 29% overall yield, yellow oil: 'H NMR (CDCl3) 6 0.99 (d, J= 5.4 Hz,
3H), 2.40-2.50 (m, 1H), 3.77 (s, 3H), 4.36 (s, 1H), 4.57 (d, J = 15.8 Hz, 1H), 4.67 (d, J =
15.8 Hz, 1H), 6.17 (d, J=16.0 Hz, 1H), 6.21 (d, J = 5.4 Hz, 1H), 6.98 (d, J = 16.0 Hz, 1H),
7.30-7.50 (m, SH). The amount of this material obtained was insufficient for further
analysis.

cis-3-(E-1-Phenylethylidene)-2,3,3a,4,5,7a-hexahydrobenzofuran (48). Obtained in a
23% overall yield, yellow oil; 'H NMR (CDCl3) 8 1.20-1.40 (m, 4H), 1.90 (s, 3H), 2.65-2.75

(m, 1H), 4.19 (s, 1H), 4.42 (d, J = 9.6 Hz, 1H), 4.58 (d, J = 9.6 Hz, 1H), 5.80-5.90 (m, 1H),
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5.95-6.00 (m, 1H), 7.20-7.50 (m, SH); HRMS m/z 226.1360 (calcd for C;¢H;50, 226.1358).
The amount of this material obtained was insufficient for further analysis.

cis-3-Isopropylidene-1-p-toluenesulfonyl-2,3,3a,4,5,7a-hexahydro-1H-indole (52).
Obtained in a 31% overall yield, yellow oil: 'H NMR (CDCls) & 1.52 (s, 3H), 1.58 (s, 3H),
1.90-2.15 (m, 2H), 2.42 (s, 3H), 2.52-2.64 (m, 1H), 4.42 (s, 1H), 3.65 (d, J = 14.0 Hz, 1H),
4.04 (d, J = 14.0 Hz, 1H), 5.95-6.05 (m, 1H), 6.10-6.20 (m, 1H), 7.33 (d, J = 8.4 Hz, 1H),
7.71 (d, J = 8.4 Hz, 1H); °C NMR (CDCl;3) § 20.4, 21.0, 21.8, 24.1, 24.6, 40.8, 51.6, 57.6,
1242, 125.3, 128.1, 128.6, 129.8, 130.7, 131.6, 143.6; HRMS m/z 318.1533 (calcd for
CisH23NO,S, 318.1528).

Scanned 'H and "*C spectra for compounds 8, 25, 48, and 52 are included in Appendix A
(pp. 87-93).
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Abstract

The palladium-catalyzed annulation of 1,3-dienes by o-iodoacetoxycoumarins provides
an efficient method for the synthesis of biologically interesting dihydrofurocoumarins. The
presence of the acetyl group on the phenolic oxygen and the use of silver carbonate as a base
are crucial for this process. This reaction is very general, regio- and stereoselective, and a
wide variety of terminal, cyclic and internal 1,3-dienes can be utilized. Derivatization of the
annulation products provides an efficient approach to numerous analogues of natural
products.

Introduction
Dihydrofurocoumarins, such as compounds 1-7, are commonly occurring plant

metabolites that exhibit pronounced biological properties.! Derivatives of columbianetin (2)
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exhibit significant cytotoxicity against KB cells.> Derivatives of norpterophyllin (3) have
high anticoagulant and antifungal activities.> Marmesin (6) is an effective inhibitor of c-
AMP synthetase* and acetylcholinesterase,” and prandiol (7) is an effective antidote against

rattlesnake poison.®

OH
AN
X o o
0 o 0 o 0”0 X X
O 0 0~ 0
1 HO 2 3

4
Angenomalin Columbianetin Norpterophyilin Norisoerlangeafusicol
A X
O 0o © 0”0 O 0o
5 6 OH 7
Ammirin Marmesin Prandiol

Numerous attempts to synthesize dihydrofurocoumarins have been reported during the
last 30 years. Early methods have involved multiple steps and generally suffer from low (2-
20%) overall yields.” Modern synthetic approaches involving the Claisen rearrangement of 7-
(allyloxy)coumarins,® the Sonogashira coupling of o-iodohydroxycoumarins with terminal
alkynes,” Ag(I)- and Ce(IV)-promoted oxidative cycloadditions of 4-hydroxycoumarin to
alkenes and dienes,'® and the Rh(Il)-catalyzed annulation of alkenes by 3-diazo-2,4-
chromenediones'! give 30-60 % overall yields, but these methods lack broad generality and,
therefore, cannot be used for the synthesis of large libraries of biologically active
dihydrofurocoumarins.

Palladium-catalyzed annulations developed in our laboratories have provided a versatile

route for the construction of complex cyclic systems.'? Previously we reported an efficient
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method for the synthesis of cis-dihydrobenzofurans by the palladium-catalyzed annulation of
1,3-dienes by o-iodophenols (eq 1)." Recently we communicated a significantly modified
procedure for the synthesis of dihydrofurocoumarins." Herein, we report our complete
results on the palladium-catalyzed annulation of 1,3-dienes by o-iodohydroxycoumarin
derivatives that provides a very general and effective route to a wide variety of angular and

linear dihydrofurocoumarins.

5 mol % Pd(dba),

' 4 Na,CO
sler =
oH n-BugNCl or LiCl

DMF, 100°C, 24 h

Results and Discussion

For our initial optimization work, the annulation of 1,3-cyclohexadiene by iodocoumarin
8 was selected as a model reaction (eq 2). Surprisingly, under the optimal reaction
conditions used in the dihydrobenzofuran project (see eq 1), the annulation gave only a 6%
yield of the desired cis-dihydrofurocoumarin 9. Instead, the reduced coumarin 10 was
isolated in an 88% yield. Possible pathways for formation of the product 10 include
reduction of the arylpalladium intermediate by formate formed from the DMF solvent and
thermal decomposition of the starting aryl iodide or arylpalladium intermediate. Carrying
out this reaction without any palladium catalyst resulted in 95% recovery of the starting
coumarin 8. On the other hand, the use of non-reducing solvents, such as N,N-
dimethylacetamide (DMA), acetonitrile and THF did not inhibit the undesired reduction.
Therefore, formation of the undesired product 10 might reasonably be attributed to thermal
decomposition of the arylpalladium intermediate. Variation of the bases, phosphine ligands

and solvents used in this reaction had little effect on the outcome of the reaction. The best
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result was achieved using Ag,COs as a base, dppe as a ligand, and THF as the solvent at 60
°C. This provided a 17% yield of the desired product 9, a 15% yield of the reduced coumarin
10 and 63% of the starting material 8. The positive effect of the Ag,COj is presumably due
to abstraction of a halide from an intermediate arylpalladium halide complex and formation
of a cationic arylpalladium intermediate, which is assumed to be more reactive towards

addition to the C=C bond."’

CH,
N L. © cat. Pd(0) m
HO o Yo Q 0" "0 Ho
I 8

From our preliminary results, it appeared that electron-rich aryl iodides have a great
propensity to undergo the undesired reduction.'® The introduction of an electron-withdrawing
acetyl group on the phenolic oxygen would be expected to decrease the electron density of
the aromatic ring and might, therefore, be expected to improve the yield of the desired
coumarin 9 if there were some way to remove the acetyl group during the annulation process.
Acylated phenols are fairly stable in the pH range from 5 to 8 and, therefore, would be
expected to tolerate our reaction conditions.'®

Using the annulation of 1,3-cyclohexadiene by acetoxyiodocoumarin 11 as a model
system, we have examined the effect on the yield of the desired coumarin 9 of various
reaction parameters, including the solvent, palladium catalyst, silver salt, phosphine ligand,
and reaction temperature (eq 3). Several representative examples are shown in Table 1.
Although the annulation using coumarin 11 under our best previous reaction conditions

obtained for coumarin 8 did not show very promising results (entry 1), the addition of water

raised the yield of coumarin 9 to 21% (entry 2). In sharp contrast to the annulation of
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coumarin 8, the acetoxy derivative 11 did not give any of the reduced coumarin 10 or its
acetoxy analogue. Besides that, the recovery of 78% of the starting material 11 indicated that

the undesired reduction is completely inhibited under these reaction conditions.

CH, CHs; CHj;
X X X
t4 — 9 + + (3)
AcO o~ Yo HO 0" "0 HO o "0
T o O

Table 1. Optimization of the annulation (eq 3).?

entry  solvent(s) (ratio) temp (°C) 9 % 11 %

1 THF 60 5 90

2 THF-H,0 (4:1) 60 21 78

3 1,4-dioxane-H,;0 80 44 50
4:1)

4 1,4-dioxane-H,0 100 64 13
(4:1)

5 1,4-dioxane-H,O 100 40 10
(1:1)

®Coumarin 11 (0.25 mmol), Pd(dba), (5 mol %, 0.0125 mmol), dppe (5 mol %, 0.0125
mmol), Ag,CO; (0.5 mmol), 1,3-cyclohexadiene (1.0 mmol), and 5 mL of the solvent were
stirred at 100 °C for 24 h.

Great improvements were subsequently achieved using a 4:1 1,4-dioxane/water mixture
as the solvent at higher temperatures. Increasing the reaction temperature to 80 and 100 °C
improved the yield of the desired product 2 to 44% (entry 3) and 64% (entry 4) respectively.
Besides the desired product, significant amounts of Heck-type products 12 and 13 were
detected among the inseparable mixture of side products. A further increase in the water
concentration resulted in a decrease in the yield of 9, perhaps due to partial hydrolysis of the

starting material 11 (entry 5). The use of polar solvents, such as DMF, DMA and

acetonitrile, apparently resulted in rapid hydrolysis of the starting material 11. Further
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optimizations, which utilized Pd(OAc); as the catalyst; dppp, dppb, BINAP and PPh; as the
phosphine ligand; and AgOAc, AgsPO4 and Ag,0 as the silver salt, only resulted in a lower
yield of the annulated product 9. We have thus used the following “optimal” procedure for
all subsequent annulations: the iodoacetoxycoumarin (0.25 mmol), Pd(dba), (5 mol %,
0.0125 mmol), dppe (5 mol %, 0.0125 mmol), Ag;CO; (0.5 mmol), the 1,3-diene (1.0 mmol),
and 5 mL of a 4:1 1,4-dioxane/water mixture were stirred at 100 °C for 24 h.

Next, the scope and limitations of this annulation have been studied using various 1,3-
dienes and representative examples are shown in Table 2. An increase in the ring size of the
cyclic 1,3-diene leads to a significantly lower yield of annulation product (entries 1-3).
Cyclopentadiene failed to give any annulation products, presumably due to rapid
dimerization or some other side reaction. Most terminal 1,3-dienes have given the expected
annulation products 16-23 in 61 to 83% yields with excellent regioselectivity (entries 4-11).
Running the reaction of 2,3-dimethyl-1,3-butadiene on a 2.0 mmol scale using only 10 mL of
the 4:1 1,4-dioxane/water mixture resulted in an even higher 91% yield (entry 11), indicating
the utility of this procedure for practical applications. The higher yield in the larger scale
reaction is presumably due to an increase in the concentration of the reagents by a factor of
four that facilitates coordination of the 1,3-diene to the arylpalladium intermediate. The
regioselectivity in these experiments can be explained by the greater affinity of the
arylpalladium intermediate for the less hindered terminal double bond over an internal double
bond. The annulation of isoprene gave a 3:2 mixture of regioisomers 24a and 24b in a 73%
yield (entry 12). The annulation of isoprene by o-iodophenol is mostly governed by steric
factors, favoring addition to the less hindered double bond and affording a 7:1 ratio of the

corresponding annulation products.”> The poor regioselectivity in entry 12 presumably
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Table 2. Synthesis of dihydrofurocoumarins by the annulation of 1,3-dienes.”

% yield”
entry coumarin 1,3-diene product(s) (ratio of
isomers)
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See the text for the experimental procedure. °All yields are isolated and based on a
single run. “This experiment was performed on a 2.0 mmol scale. A 3:2 mixture of
trans, trans and cis, trans isomers was used. °The diene used was 95% trans, trans. No water
has been employed in the solvent.
results from the higher reactivity of the presumed cationic arylpalladium intermediate

towards the more electron-rich disubstituted double bond leading to a competition between

steric and electronic factors, which produces the two different products.
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2,4-Hexadiene (a 3:2 mixture of trans,trans and cis,trans stereoisomers),'’ which has
generally been unreactive and afforded dismal yields in most of our previous palladium
annulation chemistry, gave a 3:2 ratio of trans- and cis-stereoisomers 25a and 25b in a 60 %
overall yield (entry 13). Surprisingly, the use of 95% pure trans, trans-2,4-hexadiene gave a
20:1 ratio of isomers 25a and 25b in a 70% yield (entry 13). This result will be discussed
further in our later discussion of the reaction mechanism. Remarkably, in all of our previous
palladium annulation chemistry, relatively hindered 1,3-dienes, like those employed in
entries 2, 3, 9-11 and 13, were completely unreactive and only 1,3-dienes bearing
monosubstituted terminal double bonds have given satisfactory results. The exclusive
generation of E-stereochemistry in the newly formed double bond in products 17, 18, 20 and
21 is consistent with the intermediacy of a syn-s-allylpalladium intermediate in these
reactions.'® The annulation of methyl trans,trans-2,4-hexadienoate failed, presumably
because of the low affinity of the cationic arylpalladium intermediate for the electron-
deficient double bond. Relatively sterically hindered 2,3-diphenyl-1,3-butadiene gave only a
10% yield of the desired product 26 (entry 14), while the even more hindered dienes 1,4-
diphenyl-1,3-butadiene and 2,5-dimethyl-2,4-hexadiene were completely unreactive. The
attempted annulations of 2,3-dimethoxy-1,3-butadiene, 1-methoxy-1,3-cyclohexadiene, 1,4-
pentadiene, cycloheptatriene and cyclohexene did not afford any recognizable products.

In an effort to broaden the scope of this reaction, similar reactions have been performed
on coumarins 27, 35 and 37. All 1,3-dienes investigated have reacted with coumarin 27 to
give the expected annulation products 28-34 in high yields (entries 15-21). Coumarin 35
gave the expected product 36 in a good yield, even when using relatively hindered 2,3-

dimethyl-1,3-butadiene (entry 22). Annulation of the coumarin 37 under our “optimal”
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reaction conditions resulted in hydrolysis of the acetyl group. The facile hydrolysis is
consistent with the higher acidity of 4-hydroxycoumarin than 7-hydroxycoumarin.”” The
same reaction without the addition of water gave a 48 % yield of dihydrofurocoumarin 38
(entry 23). In this experiment, the acetyl group is quite possibly still being hydrolyzed by

trace amounts of water present in commercial 1,4-dioxane.

Scheme 1
1. Hg(OAc),
X HO/EO . 0s0, o
0 O~ S0 2. NaBH,4 NaOH MesNO o "0
39 40
bh 65% HO—"bH  96%
AN
9 DDQ
toluene 0 o "0

O a1
90%

Chemical modification of the prepared dihydrofurocoumarins enhances the utility of our
approach for the synthesis of various potentially biologically interesting products. For
example, the hydroxymercuration/demercuration’® and dihydroxylation® of coumarin 23
gave the corresponding alcohol 39 and diol 40, close analogues of columbianetin (2) and
prandiol (7) respectively, in high yields (Scheme 1). The dehydrogenation?® of coumarin 9
afforded benzofurocoumarin 41 in a 90% yield. According to previous reports
benzofurocoumarins, have a high potential for the treatment of psoriasis and related

diseases.”>*
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A proposed mechanism for this annulation process is shown in Scheme 2. Initial
oxidative addition of the iodocoumarin 11 to palladium(0) intermediate 42 generated in situ
forms arylpalladium intermediate 43. Abstraction of the iodide by Ag,CO; leads to a
cationic intermediate 44, presumably stabilized by coordination to the neighboring acetyl
group. According to our results, the presence of the acetyl group completely inhibits
formation of the undesired reduction product 10 and dramatically improves the yield of the
desired product 9. This may be due to the lower propensity of the complex 44, compared to
its phenol analog, to undergo thermal decomposition. Next, complex 44 adds to the 1,3-
diene in a cis-fashion to give a o-allylpalladium complex and then s-allylpalladium
intermediate 45. Coordination of the acetoxy oxygen to the palladium atom leading to the
formation of intermediate 46 restricts rotation of the C-C bonds in the allyl moiety, and is,
presumably, responsible for the high stereoselectivity when trans,trans-2,4-hexadiene is

utilized (Table 2, entries 13 and 21).

Scheme 2
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Since no hydrolysis of the starting material 11 has been observed under our reaction
conditions, the deacylation of intermediate 46 is presumably accelerated by coordination of
the acetyl oxygen atom to the cationic palladium center. Finally, complex 47 undergoes

reductive elimination to give the final product 9 and regenerates the palladium catalyst 42.

Conclusions
In summary, we have developed an efficient palladium-catalyzed annulation of 1,3-
dienes by o-acetoxyiodocoumarins, which affords good yields of dihydrofurocoumarins. The
process is quite general, regio- and stereoselective, and a variety of o-iodoacetoxycoumarins,
as well as symmetrical and unsymmetrical 1,3-dienes can be utilized. Derivatization of the
annulation products provides an efficient approach to numerous analogues of a very

important class of biologically active natural products.

Experimental Section

General. All 'H and >C NMR spectra were recorded at 400 and 100.5 MHz respectively.
All melting points are uncorrected. Low resolution mass spectra were recorded on a
Finnigan TSQ700 triple quadripole mass spectrometer (Finnigan MAT, San Jose, CA). High
resolution mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector
mass spectrometer using EI at 70 eV.

Reagents. lodine, acetic anhydride, pyridine, mercury(ll) acetate, trimethylamine N-
oxide, 2,3-dichloro-5,6-dicyano-p-benzoquinone, osmium tetroxide, 4-hydroxycoumarin, 7-

hydroxy-4-methylcoumarin, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, E-
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1,3-hexadiene, 2,3-dimethoxy-1,3-butadiene, 1-methoxy-1,3-cyclohexadiene, 3-methyl-1,3-
pentadiene (mixture is isomers), 2,4-dimethyl-1,3-pentadiene, 2,3-dimethyl-1,3-butadiene,
isoprene, 2,4-hexadiene (mixture is isomers) and 2,3-diphenyl-1,3-butadiene were purchased
from Aldrich Chemical Co., Inc. E-2-Methyl-1,3-pentadiene was purchased from Lancaster
Co., Inc. trans,trans-2,4-Hexadiene was purchased from ChemSamp Co., Inc. 1-Phenyl-1,3-
butadiene and 1,5,5-trimethyl-3-methylenecyclohexene were prepared by Wittig
condensation according to the literature procedure.”* 5-Hydroxy-4-methylcoumarin and 6-
hydroxycoumarin were prepared as described by Harayama et al®  4,8-Dimethyl-7-

hydroxycoumarin was synthesized by a Pechman condensation.?®

Synthesis of o-Iodoacetoxycoumarins

General procedure. Compounds 11, 27, 35 and 37 were prepared by acylation of the
corresponding o-iodohydroxycoumarins, which in turn were prepared by iodination of the
corresponding hydroxycoumarins,”’ as indicated below. Iodine (5.0 mmol) dissolved in 50
mL of satd aqg KI solution was slowly added to a solution of the corresponding
hydroxycoumarin (5.0 mmol) in the minimal amount of aq NHj solution at 0-5 °C. The
resulting reaction mixture was stirred for 2 h, left overnight in the refrigerator, and then
acidified by 20% aq HCI to pH = 4-5. The precipitated o-iodohydroxycoumarin was filtered,
washed with water and dried in air. The resulting white solid was dissolved in 20 mL of
acetyl chloride (a minimal amount of DMF can be used as a co-solvent) in the presence of 1
mL of pyridine and stirred for 48 h at room temperature. Then the reaction mixture was
quenched with chilled water (caution, heat evolution!) and extracted by CH,Cl,. The organic

extract was washed with water and aq NH4Cl solution, dried over anhydrous MgSO, for 4 h
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and concentrated. The resulting residue was purified by column chromatography using silica
gel as a solid phase and 4:1 hexanes-ethyl acetate as the eluent to afford after solvent removal
the final product. The following compounds were prepared using this procedure.

7-Acetoxy-8-iodo-4-methylcoumarin (11). Obtained in a 90% overall yield from 7-
hydroxy-4-methylcoumarin, recrystallized from 1:1 ethanol/water: white solid, mp 173-175
°C; "H NMR (CDCls) 6 2.43 (s, 3H), 2.45 (d, J = 0.8 Hz, 3H), 6.28 (d, J = 0.8 Hz, 1H), 7.09
(d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H); 1>°C NMR (CDCl;) § 19.0, 21.5, 82.8, 115.2,
118.6, 119.7, 125.5, 151.9, 154.4, 154.6, 159.9, 168.4; IR (neat) 1760, 1729 cm™; HRMS m/z
343.9550 (calcd for C3H;1041, 343.9546).

7-Acetoxy-6-iodo-4,8-dimethylcoumarin (27). Obtained in a 92% overall yield from 7-
hydroxy-4,8-dimethylcoumarin, recrystallized from 1:1 ethanol/water: white solid, mp 176-
178 °C; '"H NMR (CDCl3) § 2.32 (s, 3H), 2.42 (d, J = 1.2 Hz, 3H), 2.44 (s, 3H), 6.28 (d, J =
1.2 Hz, 1H), 7.90 (s, 1H); >*C NMR (CDCl;) & 10.6, 19.0, 21.2, 85.5, 115.2, 120.0, 121.5,
131.9, 151.3, 152.0, 152.7, 160.1, 167.9; IR (neat) 1767, 1703 cm™'; HRMS m/z 357.9707
(caled for Cy3H;,04], 357.9702).

5-Acetoxy-6-iodo-4-methylcoumarin (35). Obtained in an 85% overall yield from 5-
hydroxy-4-methylcoumarin, purified by column chromatography using 4:1 hexanes-ethyl
acetate: white solid, mp 144-150 °C; 'H NMR (CDCl3) 8 2.46 (s, 3H), 2.47 (d, J= 1.2 Hz,
3H), 6.27 (d, J = 1.2 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H); °C NMR
(CDCL) 6 22.2, 22.8, 87.6, 115.8, 117.4, 117.9, 118.4, 141.0, 150.4, 155.1, 159.3, 168.6; IR
(neat) 1754, 1733 cm™; HRMS m/z 343.9551 (caled for C1;H;104, 343.9546).

4-Acetoxy-3-iodocoumarin (37). Obtained in a 40% overall yield from 4-

hydroxycoumarin, purified by column chromatography using 4:1 hexanes-ethyl acetate:
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white solid, mp 166-168 °C; '"H NMR (CDCls) & 2.53 (s, 3H), 7.33 (ddd, J = 8.0, 7.2, 1.0 Hz,
1H), 7.42 (dd, J = 8.5, 1.0 Hz, 1H), 7.49 (dd, J = 8.0, 1.5 Hz, 1H) 7.64 (ddd, J = 8.5, 7.2, 1.5
Hz, 1H); >C NMR (CDCl;) & 21.4, 82.8, 116.2, 117.2, 122.9, 125.1, 133.6, 153.1, 159.0,
162.6, 165.8; IR (neat) 1779, 1717 cm™; HRMS m/z 329.9396 (caled for C;H;IO,,
329.9389).

General procedure for the Pd-catalyzed annulation of 1,3-dienes by o-
iodoacetoxycoumarins. The o-iodoacetoxycoumarin (0.25 mmol), Pd(dba), (5 mol %,
0.0125 mmol), dppe (5 mol %, 0.0125 mmol), Ag,CO3 (0.5 mmol) and 1,4-dioxane (4 mL)
were stirred in a capped vial for 5 min, and then water (1 mL) and the 1,3-diene (1.0 mmol)
were added. The resulting reaction mixture was stirred at 100 °C for 24 h, cooled to room
temperature, filtered and the filtrate was concentrated to give a yellow residue. The resulting
residue was purified by column chromatography using silica gel as a solid phase and 4:1
hexanes/ethyl acetate as the eluent to afford after solvent removal the final product. Solid
products were then recrystallized from 1:1 ethanol/water. The following new compounds
were prepared using this procedure.

7a,10,11,11a-Tetrahydro-4-methylbenzo|b]-2H-furo[2,3-h]-1-benzopyran-2-one (9).
Obtained in a 64% yield: white solid, mp 164-165 °C; '"H NMR (CDCls) & 1.43-2.32 (m, 4H),
2.40 (d, J=1.2 Hz, 3H), 3.67 (m, 1H), 5.07 (m, 1H), 6.04 (m, 1H), 6.11 (d, J= 1.2 Hz, 1H),
6.21 (m, 1H), 6.76 (d, J= 8.5 Hz, 1H), 7.41 (d, J= 8.5 Hz, 1H); C NMR (CDCl3) & 19.2,
23.3, 24.2, 38.4, 80.6, 107.2, 111.4, 114.3, 118.6, 123.3, 125.6, 134.8, 151.3, 153.4, 161 .4,
163.1; IR (neat) 1733, 1615 cm™; HRMS m/z 254.0946 (calcd for C16H 403, 254.0943).

8,9-Dehydro-4-methylcyclohepta[b]-2H-furo[2,3-k]-1-benzopyran-2-one (14).

Obtained in a 25% yield: white solid, mp 154-168 °C; '"H NMR (CDCls) § 1.53-2.34 (m, 6H),
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2.39(d, J=1.2Hz, 3H), 3.77 (ddd, J = 10.3, 9.1, 2.8 Hz, 1H), 5.60 (dd, J=9.1, 1.8 Hz, 1H),
5.80-5.84 (m, 2H), 6.10 (d, J = 1.2 Hz, 1H), 6.75 (d, J = 8.6 Hz, 1H), 7.41 (d, J = 8.6 Hz,
1H); BC (CDCls) & 19.3, 22.4, 26.7, 26.8, 42.3, 87.2, 106.8, 111.4, 114.3, 118.7, 125.7,
127.1, 129.9, 151.1, 153.4, 161.4, 162.4; ; IR (neat) 1725, 1605 cm™'; HRMS m/z 268.1102
(calcd for C17H;603, 268.1099).

8,9-Dehydro-4-methylcycloocta[b]-2H-furo[2,3-k]-1-benzopyran-2-one (15).
Obtained in a 28% yield: white solid mp 126-130 °C; '"H NMR (CDCl;) & 1.18-2.30 (m, 8H),
2.38 (d, J=1.2 Hz, 3H), 2.78 (m, 1H), 3.85 (dt, J = 10.1, 2.3Hz, 1H), 5.40 (ddt, J = 11.8,
5.1, 1.4 Hz, 1H), 5.75-5.95 (m, 2H), 6.09 (d, J= 1.2 Hz, 1H), 6.78 (d, J= 8.4 Hz, 1H), 7.40
(d, J = 8.4 Hz, 1H); °C (CDCl;) & 19.4, 25.6, 26.4, 29.7, 30.4, 47.9, 86.0, 107.1, 111.4,
114.5, 117.1, 125.7, 127.9, 134.1, 152.0, 153.4, 161.2, 162.9; IR (heat) 1733, 1607 cm™;
HRMS m/z 282.1259 (calcd for Cy3H 303, 282.1256).

Dihydrofurocoumarin 16. Obtained in a 61% yield: white solid mp 70-74 °C; '"H NMR
(CDCl3) 8 1.02 (s, 3H), 1.09 (s, 3H), 1.70-2.20 (m, 4H), 1.78 (d, J= 1.2 Hz, 3H), 2.39 (d, J
= 1.2 Hz, 3H), 3.24 (s, 2H), 5.92 (9, /= 1.2 Hz, 1H), 6.03 (d, J= 1.2 Hz, 1H), 6.70 (d, J=
8.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H); *C NMR (CDCl;) § 19.2, 24.1, 29.1, 29.5, 31.0, 40.5,
443, 48.2, 90.2, 106.9, 111.0, 113.7, 113.8, 122.6, 125.5, 138.4, 151.1, 153.4, 161.6, 162.8,;
IR (neat) 1732, 1615 cm™'; HRMS m/z 310.1572 (caled for CaoH,03 310.1569).

8,9-Dihydro-4-methyl-8-(E-2-phenylethenyl)-2 H-furo[2,3-k]-1-benzopyran-2-one
(17). Obtained in a 79% yield: white solid mp 145-148 °C; '"H NMR (CDCl3) § 2.32 (d, J =
0.8 Hz, 3H), 3.16 (dd, J=16.1, 7.5 Hz, 1H), 3.55 (dd, J=16.1, 9.4 Hz, 1H), 5.49 (dddd, J
=94,7.5, 74, 1.0 Hz, 1H), 6.03 (d, J= 0.8 Hz, 1H), 6.28 (dd, J=15.8, 7.4 Hz, 1H), 6.67

(dd, J=15.8, 1.0 Hz, 1H), 6.72 (d, J= 8.4 Hz, 1H), 7.17-7.36 (m, 5H), 7.35 (d, /= 8.4 Hz,
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1H); ®C NMR (CDCl) & 19.24, 33.28, 85.90, 106.77, 111.50, 113.69, 114.34, 125.76,
126.97, 127.33, 128.51, 128.85, 133.32, 136.02, 151.10, 153.26, 161.28, 163.44; IR (neat)
1727, 1615 cm'l; HRMS m/z 304.1104 (calcd for CoH;603 304.1099).

8-(E-1-butenyl)-8,9-Dihydro-4-methyl-2H-furo[2,3-#]-1-benzopyran-2-one (18).
Obtained in an 80% yield: white solid, mp 142-146 °C; '"H NMR (CDCl;) & 1.04 (t, J = 7.6
Hz, 3H), 2.08-2.18 (m, 2H), 2.39 (s, 3H), 3.11 (dd, J = 16.0, 7.8 Hz, 1H), 3.52 (dd, J = 16.0,
9.4 Hz, 1H), 5.33 (q, J = 7.8 Hz, 1H), 5.66 (ddq, J=15.2, 7.8, 1.4 Hz, 1H), 5.93 (dt, J =
15.2, 6.3 Hz, 1H), 6.09 (s, 1H), 6.74 (d, J = 8.4 Hz, 1H); 7.41 (d, J = 8.4 Hz, 1H); °C
(CDCls) 13.3, 19.2, 21.4, 33.1, 86.4, 106.7, 111.3, 113.9, 114.2, 125.6, 127.3, 137.6, 151.0,
153.3, 161.4, 163.5; IR (heat) 1732, 1613 cm™; HRMS m/z 256.1103 (calcd for CiH; 603,
256.1099).

8,9-Dihydro-4-methyl-8-(2-methylpropenyl)-2H-furof2,3-h]-1-benzopyran-2-one
(19). Obtained in a 78% yield: white solid, mp 140-146 °C; '"H NMR (CDCl;) & 1.81 (d, J =
1.2 Hz, 3H), 1.82 (d, J = 1.4 Hz, 3H), 2.39 (d, J = 1.2 Hz, 3H), 3.04 (dd, J = 16.0, 8.8 Hz,
1H), 3.53 (dd, J = 16.0, 8.8 Hz, 1H), 5.45 (dt, J= 8.8, 1.2 Hz, 1H), 5.65 (q, J= 8.8 Hz, 1H),
6.09 (d, J=1.2 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H); 7.40 (d, J = 8.4 Hz, 1H); °C (CDCl3) &
18.6, 19.2, 26.0, 33.5, 82.3, 106.7, 111.3, 114.0, 114.1, 123.9, 125.6, 139.6, 151.0, 153.3,
161.4, 163.6; IR (heat) 1727, 1610 cm™”; HRMS m/z 256.1103 (calcd for CigH 603,
256.1099).

8-(2-E-buten-2-yl)-8,9-Dihydro-4-methyl-2H-furo[2,3-k]-1-benzopyran-2-one  (20).
Obtained in an 83% yield: white solid, mp 140-4 °C; 'H NMR (CDCl) & 1.64 (s, 3H), 1.68
(d, J= 6.8 Hz, 3H), 2.40 (s, 3H), 3.18 (dd, J = 16.4, 8.0 Hz, 1H), 3.45 (dd, J = 16.4, 9.6 Hz,

1H), 5.33 (t, J = 9.0 Hz, 1H), 5.68 (q, J = 6.8 Hz, 1H), 6.10 (s, 1H), 6.76 (d, J = 8.4 Hz,
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1H); 7.41 (d, J = 8.4 Hz, 1H); °C (CDCl;) 6 10.8, 13.4, 19.2, 31.2, 90.5, 106.5, 111.3, 114.1,
124.0, 125.6, 133.8, 151.0, 153.3, 161.4, 164.0; IR (heat) 1728, 1613 cm™; HRMS m/z
256.11025 (calced for Ci6H1603, 256.10994).

8,9-Dihydro-4,8-dimethyl-8-E-propenyl-2 H-furo|2,3-#]-1-benzopyran-2-one  (21).
Obtained in a 78% yield: white solid, mp 91-93 °C; TH NMR (CDCl3) 6 1.59 (s, 3H), 1.72 (d,
J=5.6 Hz, 3H), 2.39 (d, J = 0.8 Hz, 3H), 3.17 (d, J = 15.9 Hz, 1H), 3.32 (d, /= 15.9 Hz,
1H), 5.71 (d, J=15.7 Hz, 1H), 5.80 (dq, J=15.7, 5.6 Hz, 1H), 6.09 (d, J = 0.8 Hz, 1H), 6.73
(d, J= 8.4 Hz, 1H); 7.41 (d, J = 8.4 Hz, 1H); 3C NMR (CDCl;) 18.0, 19.3, 26.7, 39.2, 90.8,
106.2, 111.3, 113.7, 114.1, 125.3, 125.6, 134.1, 151.3, 153.4, 161.5, 162.9; IR (neat) 1735,
1615 cm™; HRMS m/z 256.1102 (caled for CigH 603, 256.1099).

8,9-Dihydro-4,8-dimethyl-8-(2-methylpropenyl)-2H-furo[2,3-k]-1-benzopyran-2-one
(22). Obtained in a 75% yield: white solid, mp 78-80 °C; 'H NMR (CDCls) & 1.56 (s, 3H),
1.72 (s, 3H), 1.76 (s, 3H), 2.39 (s, 3H), 3.30 (d, J = 15.8 Hz, 1H), 3.40 (d, J = 15.8 Hz, 1H),
5.57 (s, 1H), 6.09 (s, 1H), 6.74 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H); C NMR
(CDCl3) 19.3, 19.5, 26.9, 28.7, 40.8, 91.1, 106.9, 111.2, 113.9, 114.0, 125.7, 129.6, 136.2,
151.2, 153.4, 161.5, 162.6; IR (heat) 1728, 1614 cm™; HRMS m/z 270.1262 (calcd for
C17H 1303, 270.1256).

8,9-Dihydro-4,8-dimethyl-8-(2-propenyl)-2H-furo[2,3-k]-1-benzopyran-2-one  (23).
Obtained in 75% and 91% (2 mmol scale) yields: white solid, mp 101-103 °C; 'H NMR
(CDCl3) & 1.61 (s, 3H), 1.83 (d, J = 0.8 Hz, 3H), 2.39 (d, J = 1.2 Hz, 3H), 3.18 (d, J = 16.0
Hz, 1H), 3.39 (d, /= 16.0, 1H), 4.88 (q, /= 0.8 Hz, 1H), 5.10 (q, J= 0.8 Hz, 1H), 6.09 (d, J

= 1.2 Hz, 1H), 6.77 (d, J=8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H); *C NMR (CDCL;) & 18.9,
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19.2, 26.4, 38.4, 93.1, 106.8, 110.7, 111.3, 113.6, 114.1, 125.7, 146.9, 151.3, 153.4, 161.4,
163.0; IR (neat) 1728, 1615 cm™; HRMS m/z 256.1102 (calcd for Ci¢H 403, 256.1099).
8,9-Dihydro-4-methyl-8-(2-propenyl)-2H-furo[2,3-h]-1-benzopyran-2-one (24a) and
8-ethenyl-8,9-dihydro-4,8-dimethyl-2 H-furo[2,3-h]-1-benzopyran-2-one  (24b)  were
isolated as a 3:2 inseparable mixture of regioisomers in a 73% overall yield. The ratio of
regioisomers was confirmed by 'H NMR spectroscopy and HPLC. Isomer 24a: 'H NMR
(CDCl3) 8 1.77 (s, 3H), 2.40 (s, 3H), 3.19 (dd, J = 16.0, 9.6 Hz, 1H), 3.53 (dd, J = 16.0, 9.6
Hz, 1H), 4.96 (s, 1H), 5.11 (s, 1H), 5.35 (dd, J=16.0, 9.6 Hz, 1H), 5.35 (t, J= 9.6 Hz, 1H),
6.10 (s, 1H), 6.79 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H). isomer 24b: '"H NMR
(CDCl3) 8 1.61 (s, 3H), 2.40 (s, 3H), 3.20 (d, J = 15.6 Hz, 1H), 3.35 (d, J = 15.6 Hz, 1H),
5.15(d, J=10.8 Hz, 1H), 5.34 (d, J = 17.3 Hz, 1H), 6.06 (dd, J = 17.3, 10.8 Hz, 1H), 6.10 (s,
1H), 6.77 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H). The following C NMR, IR and
HRMS data were obtained on the mixture of isomers: *C NMR (CDCl3) 6 17.3, 19.3, 19.3,
26.5, 31.7, 38.9, 88.0, 90.8, 106.6, 106.9, 111.4, 111.5, 113.0, 113.5, 113.7, 114.2, 114.3,
115.6, 125.7, 125.8, 140.9, 143.2, 151.1, 153.3, 153.4, 161.3, 161.4, 162.9, 163.9; IR (neat)
1731, 1614 cm™; HRMS, 242.0946 (calcd for C;sH; 403 242.0943).
8,9-Dihydro-4,9-dimethyl-8-(E-1-propenyl)-2 H-furo[2,3-#]-1-benzopyran-2-one (3:2
mixture of trans- and cis-isomers) (25a and 25b). Obtained as a white solid in a2 60% overall
yield when a mixture of isomeric 2,4-hexadienes was used. traws,trans-2,4-Hexadiene gave
a 20:1 ratio of 25a and 25b in a 70% yield. frans-Isomer (25a): '"H NMR (CDCls) § 1.27 (d,
J=17.2Hz, 3H), 1.82 (dd, J= 7.0, 1.5 Hz, 3H), 2.39 (s, 3H), 3.74 (p, J= 7.7 Hz, 1H), 5.52 (1,
J=8.4Hz, 1H), 5.73 (ddq, J=15.2, 8.4, 1.5 Hz, 1H), 5.88-6.01 (m, 1H), 6.10 (s, 1H), 6.75

(d, J= 8.6 Hz, 1H); 7.40 (d, J = 8.6 Hz, 1H); *C NMR  15.1, 18.3, 19.3, 38.3, 89.7, 107.0,
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111.5, 1144, 119.9, 125.6, 125.6, 132.7, 151.1, 153.4, 161.4, 162.7; IR (neat) 1720, 1605
cm’. cis-Isomer (25b): 'H NMR (CDCl3) 6 1.50 (d, J= 7.0 Hz, 3H), 1.77 (dd, /= 6.6, 1.5
Hz, 3H), 2.39 (s, 3H), 3.49 (p, J= 7.2 Hz, 1H), 4.76 (t, J= 7.3 Hz, 1H), 5.64 (ddq, J=15.4,
7.7, 1.5 Hz, 1H), 5.82-5.91 (m, 1H), 6.10 (s, 1H), 6.74 (d, J= 8.6 Hz, 1H); 7.40 (d, J= 8.6
Hz, 1H). The following *C NMR, IR and HRMS data were obtained on the mixture of
stereoisomers: °C NMR (CDCl;) & 15.1, 18.0, 18.1, 18.2, 19.3, 38.0, 38.3, 41.5, 89.7, 93.7,
106.9, 107.0, 111.4, 111.5, 114.3, 114.4, 118.3, 119.9, 125.6, 125.7, 125.8, 129.0, 131.0,
132.7, 151.1, 151.4, 153.3, 153.4, 161.2, 161.3, 162.7, 163.0; IR (neat) 1729, 1613 cm™;
HRMS m/z 256.1105 (calcd for C;6H603, 256.1099).

8,9-Dihydro-4-methyl-8-phenyl-8-(1-phenylethenyl)-2H-furo|2,3-k]-1-benzopyran-2-
one (26). Obtained in a 10% yield: white solid, mp 60-64 °C; '"H NMR (CDCl;) & 2.38 (d, J
= 1.2 Hz, 3H), 3.81 (d, J = 15.8 Hz, 1H), 3.83 (d, J= 15.8 Hz, 1H), 5.43 (d, J= 0.8 Hz, 1H),
5.60 (d, J = 0.8 Hz, 1H), 6.08 (d, J = 1.2 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 7.05-7.34 (m,
10H), 7.31 (d, J = 7.6 Hz, 1H); °C NMR (CDCl) & 19.2, 38.7, 95.9, 106.9, 111.6, 113.6,
114.5, 116.8, 125.8, 126.4, 127.8, 128.1, 128.3, 128.6, 128.7, 139.4, 142.6, 150.9, 151.0,
153.3, 161.2, 162.3; IR (neat) 1727, 1612 cm™'; HRMS m/z 380.1419 (calcd for CasHaO3,
380.1412).

Dihydrofurocoumarin 28. Obtained in a 72% yield: white solid, mp 180-184 °C; 'H
NMR (CDCls) 6 1.00 (s, 3H), 1.11 (s, 3H), 1.66 (d, J = 13.8 Hz, 1H), 1.74 (s, 3H), 1.81 (d, J
=17.6 Hz, 1H), 1.90 (d, J= 17.6 Hz, 1H), 1.99 (d, J = 13.8 Hz, 1H), 2.25 (s, 3H), 2.37 (d, J
=1.2 Hz, 3H), 3.12 (d, /= 16.0 Hz, 1H), 3.14 (d, J= 16.0 Hz, 1H), 5.51 (s, 1H), 6.07 (d, J=

1.2 Hz, 1H), 7.20 (s, 1H); *C NMR (CDCL3) & 8.8, 19.3, 24.2, 28.6, 30.2, 31.0, 43.4, 44.4,
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48.1, 89.5, 107.9, 110.7, 113.4, 117.4, 122.9, 123.7, 138.6, 153.3, 153.4, 160.9, 162.2; IR
(neat) 1720, 1616 cm™'; HRMS m/z 324.1731 (caled for CyiHag O3, 324.1725).

2,3-Dihydro-5,9-dimethyl-2-(E-2-phelylethenyl)-7H-furo[3,2-g][1]-benzopyran-7-one
(29). Obtained in a 73% yield: white solid, mp 140-144 °C; '"H NMR (CDCls)  2.32 (s, 3H),
2.39(d,J=1.0 Hz, 3H), 3.16 (dd, J= 15.6, 7.7 Hz, 1H), 3.52 (dd, J= 15.6, 9.2 Hz, 1H), 5.49
(dt,J=9.2,7.7 Hz, 1H), 6.11 (q, J = 1.0 Hz, 1H), 6.36 (dd, J= 15.8, 7.7 Hz, 1H), 6.73 (d, J
= 15.8 Hz, 1H), 7.27-7.48 (m, 6H); °C NMR (CDCl;) § 8.8, 19.3, 36.2, 85.2, 108.2, 111.2,
113.9, 117.5, 119.2, 123.1, 126.8, 127.8, 128.5, 129.0, 132.3, 133.2, 136.1, 153.2, 153 .4,
161.4, 170.0; IR (neat) 1714, 1616, 1585 cm’l; HRMS m/z 318.1263 (caled for CyHg O3,
318.1256).

2-(E-Butenyl)-2,3-dihydro-5,9-dimethyl-7H-furo[3,2-g][1]-benzopyran-7-one  (30).
Obtained in an 75% yield: white solid, mp 127-129 °C; 'H NMR (CDCLs) & 1.04 (t, J = 7.6
Hz, 3H), 2.19 (pd, J= 7.6, 1.7 Hz, 2H), 2.29 (s, 3H), 2.38 (d, J = 1.2 Hz, 3H), 3.04 (ddd, J =
15.6, 8.1, 1.2 Hz, 1H), 3.40 (ddd, J = 15.6, 9.0, 1.0 Hz, 1H), 5.27 (q, J = 8.2 Hz, 1H), 5.65
(ddt,J=15.3,7.8, 1.7 Hz, 1H), 5.92 (dtd, J=15.3, 6.2, 0.8 Hz, 1H), 6.09 (d, /= 1.2 Hz, 1H),
7.22 (s, 1H); ®C (CDCly) & 8.8, 13.3, 19.3, 25.4, 36.0, 85.6, 108.0, 111.0, 113.7, 117.4,
123.5, 127.7, 137.2, 153.2, 153.3, 161.5, 162.1; IR (neat) 1713, 1614 cm™; HRMS m/z
270.1262 (calcd for C;7H 1305, 270.1256).

2,3-Dihydro-5,9-dimethyl-2-(2-methylpropenyl)-7H-furo[3,2-g][1]benzopyran-7-one
(31). Obtained in a 79% yield: white solid, mp 176-180 °C; 'H NMR (CDCl3) 6181 (d,J=
1.2 Hz, 3H), 2.28 (s, 3H), 2.38 (d, J= 1.0 Hz, 3H), 2.98 (ddd, /= 15.5, 8.6, 1.3 Hz, 1H), 3.39
(ddd, J=15.5, 8.7, 1.0 Hz, 1H), 5.44 (dt,J=9.1, 1.1 Hz, 1H), 5.57 (q, J= 8.6 Hz, 1H), 6.09

(d, J=1.2 Hz, 1H), 7.22 (s, 1H); '*C 5 (PPM) 8.6, 18.4, 19.1, 25.9, 36.2, 81.4, 107.7, 110.7,
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113.4, 117.0, 123.5, 124.0, 138.7, 152.9, 153.1, 161.4, 161.8; IR (neat) 1704, 1622 cm™;
HRMS m/z 270.1262 (calcd for C17H;303, 270.1256).
2,3-Dihydro-2,5,9-trimethyl-2-(2-propenyl)-7H-furo[3,2-g][1]-benzopyran-7-one
(32). Obtained in a 70% yield: white solid, mp 142-144 °C; 'H NMR (CDCls) § 1.60 (s, 3H),
1.83 (s, 3H), 2.31 (s, 3H), 2.37 (d, J= 1.2 Hz, 3H), 3.08 (dd, J = 15.6, 1.0 Hz, 1H), 3.31 (dd,
J=15.6,0.9 Hz, 1H), 4.87 (t, /= 1.4 Hz, 1H), 5.08 (s, 1H), 6.09 (d, J=1.2 Hz, 1H), 7.21 (s,
1H); *C NMR (CDClLs) § 8.7, 18.9, 19.3, 26.4, 41.2, 91.9, 108.0, 110.6, 110.9, 113.7, 117.6,
123.2, 147.2, 153.2, 153.4, 161.0, 162.1; IR (neat) 1705, 1618 cm™; HRMS m/z 270.1262
(caled for C7H;303, 270.1256).
2-(2-E-Buten-2-yl)-2,3-dihydro-5,9-dimethyl-7H-furo[3,2-g][1]-benzopyran-7-one
(33). Obtained in a 75% yield: white solid, mp 180-186 °C; 'H NMR (CDCl;3) 6 1.82 (d, J =
1.2 Hz, 3H), 2.28 (s, 3H), 2.38 (d, /= 1.2 Hz, 3H), 2.97 (ddd, J = 15.6, 7.5, 0.9 Hz, 1H), 3.39
(ddd, J=15.6, 8.8, 0.8 Hz, 1H), 5.44 (dt, J=9.2, 1.2 Hz, 1H), 5.57 (q, J = 8.8 Hz, 1H), 6.09
(d, J = 1.2 Hz, 1H), 7.22 (s, 1H); ">C (CDCl;) & 8.8, 18.7, 19.3, 26.1, 36.4, 81.7, 108.0,
111.0, 113.6, 117.3, 123.8, 124.3, 139.0, 153.2, 1534, 161.6, 162.1; IR (neat) 1698, 1613
cm™'; HRMS m/z 270.1262 (caled for C17H;503, 270.1256).
2,3-Dihydro-3,5,9-trimethyl-8-(E-1-propenyl)-7H-furo[3,2-g][1]-benzopyran-7-one
(3:2 mixture of trans- and cis-isomers) (34a and 34b). Obtained as a white solid in a 60%

overall yield when a mixture of isomeric 2,4-hexadienes was used. tranms,trans-2,4-

Hexadiene gave a 20:1 ratio of 34a and 34b in 70% yield. trans-Isomer (34a): '"H NMR
(CDCl3) 6 1.20 (d, J= 7.2 Hz, 3H), 1.80 (dd, J = 6.5, 1.5 Hz, 3H), 2.29 (s, 3H), 2.40 (s, 3H),
3.54 (p, J=7.4 Hz, 1H), 5.21 (t, J = 8.5 Hz, 1H), 5.57-5.75 (m, 1H), 5.80-6.00 (s, 1H), 6.10

(s, 1H), 7.17 (s, 1H). cis-Isomer (34b): 'H NMR (CDCls) § 1.36 (d, J = 6.9 Hz, 3H), 1.80
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(dd, J=6.5, 1.5 Hz, 3H), 2.28 (s, 3H), 2.40 (s, 3H), 3.25 (p, /= 7.2 Hz, 1H), 4.65 (t, J=8.3
Hz, 1H), 5.57-5.75 (m, 1H), 5.80-6.00 (m, 1H), 6.10 (s, 1H), 7.14 (s, 1H). The following >C
NMR, IR and HRMS data were obtained on the mixture of stereoisomers: >C NMR (CDCl;)
0 8.8, 16.5,17.7, 18.3, 19.4, 39.9, 42.6, 89.0, 93.5, 108.1, 111.0, 111.1, 113.9, 116.2, 116.7,
126.2, 129.29, 129.7, 131.6, 131.9, 153.3, 153.4, 160.8, 162.0; IR (neat) 1714, 1620 cm™;
HRMS m/z 270.1262 (calcd for C17H;303, 270.1256).
2,3-Dihydro-2,9-dimethyl-8-(2-propenyl)-7H-furo[2,3-f]-1-benzopyran-7-one  (36).
Obtained in a 58% yield: white solid, mp 73-76 °C; 'H NMR (CDCl3) & 1.59 (s, 3H), 1.85 (q,
J=10.6 Hz, 3H), 2.57 (d, J= 1.2 Hz, 3H), 3.03 (dd, J=15.4, 0.8 Hz, 1H), 3.26 (dd, /= 15.4,
0.8 Hz, 1H), 4.88 (t, J= 1.6 Hz, 1H), 5.08 (s, 1H), 6.10 (d, /= 1.2 Hz, 1H), 6.80 (d, /= 8.0
Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H); °C NMR (CDCl3) & 19.1, 22.7, 26.6, 40.6, 93.0, 106.6,
108.8, 110.5, 113.7, 122.3, 127.5, 147.4, 153.3, 154.1, 156.5, 161.4; IR (neat) 1725, 1615
cm'l; HRMS m/z 256.1102 (caled for CigH;603, 256.1099).
1a,5,6,6a-Tetrahydrobenzo|b]-4H-furo[3,2-c][1]-benzopyran-4-one (38). Obtained in
a 48% yield: white solid, mp 140-144 °C; 'H NMR (CDCl3) 8 1.55-1.67 (m, 1H), 1.92-2.06
(m, 1H), 2.13-2.27 (m, 2H), 3.54 (ddd, J =10.0, 8.7, 4.7 Hz, 1H), 5.28 (d, /= 10.2 Hz, 1H),
6.06 (d, J=10.2 Hz, 1H), 6.26-6.33 (m, 1H), 7.28 (ddd, /= 7.6, 7.5, 1.0 Hz, 1H), 7.38 (dd, J
= 8.4, 1.0 Hz, 1H), 7.56 (ddd, J = 8.4, 7.5, 1.5 Hz, 1H), 7.67 (dd, J = 7.6, 1.5 Hz, 1H); °C
NMR (CDCl3) 8 22.5, 23.6, 38.0, 82.5, 106.3, 112.9, 116.9, 122.6, 122.8, 123.8, 132.2,
135.7, 154.9, 160.7, 166.4; IR (neat) 1718, 1640 cm™; HRMS m/z 240.0791 (calcd for

Ci5sHi203, 240.0786).

Derivatization of dihydrofurocoumarins
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Preparation of dihydrofurocoumarin 39. A modified general solvomercuration
procedure was used.>® Coumarin 23 (0.25 mmol, 64 mg) and Hg(OAc), (0.5 mmol, 163 mg)
were dissolved in 2 mL of a 1:1 ether-water solution and 2 drops of 48% HC1O, was added to
dissolve the precipitated mercury(Il) oxide. The reaction mixture was stirred at room
temperature for 24 h, then quenched with a solution of NaBH,4 (0.3 mmol, 11.4 mg) in 5 %
NaOH (0.5 mL). The resulting reaction mixture was stirred for 10 min, gently acidified with
10 mL of satd NH4Cl (use of HCI results in only a 10% yield of the product 39), and
extracted with diethyl ether. Then the ether extract was dried over anhydrous MgSO4 and
concentrated. The resulting residue was purified by column chromatography using silica gel
as a solid phase and 4:1 hexanes-ethyl acetate as the eluent to afford after solvent removal the
final product.

8,9-Dihydro-4,8-dimethyl-8-(2-hydroxy-2-propyl)-2 H-furo|2,3-h]-1-benzopyran-2-
one (39). Obtained in a 65% yield: white solid, mp 118-120 °C; '"H NMR (CDCl3) & 1.26 s,
3H), 1.39 (s, 3H), 1.47 (s, 3H), 2.39 (d, J= 1.2 Hz, 3H), 2.98 (d, /= 16.0 Hz, 1H), 3.59 (d, J
=16.0, 1H), 6.11 (d, J= 1.2 Hz, 1H), 6.75 (d, J= 8.4 Hz, 1H), 7.41 (d, J=8.4 Hz, 1H); °C
NMR (CDCl3) 8 19.3, 23.0, 24.5, 24.9, 34.9, 74.5, 97.1, 106.8, 111.4, 114.2, 114.3, 125.6,
151.3, 153.3, 161.4, 162.8; IR (neat) 3469, 1727, 1614 cm™'; HRMS m/z 274.1212 (calcd for
Ci6Hi304, 274.1205).

Preparation of the diol 40. A modified general dihydroxylation procedure was used.”
A solution of coumarin 23 (0.25 mmol, 64 mg) and NMO dihydrate (0.55 mmol, 61 mg) in
acetone-water (8:1, 2 mL) was treated with 1 mL of 5 % OsO4 solution in ethanol (0.02
mmol, 5 mg). The reaction was stirred at 70 °C for 2 h, then diluted with 10 % aq NaHCO;

(2 mL) and extracted with ethyl acetate. The organic extract was washed with water and aq
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NH,4CI solution, dried over anhydrous MgSO4 for 4 h and concentrated. The resulting
residue was purified by column chromatography using silica gel as a solid phase and 4:1
hexanes-ethyl acetate as the eluent to afford after solvent removal the final product.

8,9-Dihydro-4,8-dimethyl-8-(1,2-dihydroxy-2-propyl)-2 H-furo[2,3-4]-1-benzopyran-
2-one (40). Obtained as a pair of diastereomers in a 96% yield: white solid, mp 163-173 °C;
'H NMR (CDCls) 8 1.26 (s, 3H), 1.37 (s, 3H), 1.47 (s, 6H), 2.39 (d, J = 0.8 Hz, 6H), 2.70-
4.40 (m, 8H), 6.11 (g, J = 0.8 Hz, 1H), 6.70-6.77 (m, 2H), 7.41 (d, J = 8.4 Hz, 2H); *C
(CDCl3) 6 19.3, 20.2, 20.5, 23.1, 23.3, 35.0, 35.2, 66.4, 66.9, 75.3, 76.2, 95.9, 97.4, 106.8,
1069, 111.5, 111.7, 113.8, 114.0, 114.4, 14.5, 125.6, 125.7, 151.2, 151.3, 153.2, 153.3,
161.2, 161.3, 162.2, 162.3; IR (neat) 3406, 1709, 1608 cm™; HRMS m/z 290.1160 (calcd for
Ci6Hi30s, 290.1154).

Preparation of the coumarin 41. A standard general dehydrogenation procedure was
used.>® A solution of coumarin 9 (0.25 mmol, 64 mg) and DDQ (0.50 mmol, 60 mg) in 1 mL
of toluene was stirred at 100 °C for 24 h. Then the resulting reaction mixture was cooled to
room temperature, filtered and the filtrate was concentrated. The resulting residue was
purified by column chromatography using silica gel as a solid phase and 8:1 hexanes-ethyl
acetate as the eluent to afford after solvent removal the final product.

4-Methylbenzo|[b]-2H-furo[2,3-h]-1-benzopyran-2-one (41). Obtained in a 90% yield:
white solid, mp 216-219 °C; '"H NMR (CDCls) § 2.53 (d, J = 1.2 Hz, 3H), 6.07 (d, J=1.2
Hz, 1H), 7.45 (td, J= 7.3, 1.0 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.53 (td, J = 7.6, 1.2 Hz,
1H), 7.60 (dt, J= 7.3, 1.0 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 8.42 (ddd, J= 7.6, 1.2, 0.8 Hz,

1H); *C NMR (CDCl3) § 19.6, 108.5, 111.7, 111.7, 113.2, 115.2, 122.1, 123.4, 123.8, 124.0,
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128.0, 149.7, 153.5, 156.3, 158.5, 160.8; IR (neat) cm'l; HRMS m/z 250.0635 (calcd for
Ci6H1403, 250.0630).

Scanned 'H and *C spectra for compounds 9, 11, and 14-41 are included in Appendix B
(pp. 94-156).
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Abstract
The palladium-catalyzed annulation of 1,3-dienes by o-iodoacetoxyflavonoids provides
an efficient approach to biologically interesting dihydrofuroflavonoids. This reaction is very
general, regioselective, and a wide variety of terminal, cyclic and internal 1,3-dienes can be

utilized.

Introduction
Dihydrofuroflavonoids occur commonly in plants and fruits and are very important

because of their pronounced biological properties.'

According to recent reports, derivatives
of dihydrofuroflavones (1) have high cytotoxicity against P-388 cells.” Derivatives of

dihydrofuroflavanones (2) are effective inhibitors of protein kinase,> aromatase,* and larvae

growth.” Derivatives of dihydrofuroisoflavones (3) exhibit high antifungal activity.®
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Despite significant interest, no efficient, general method for the synthesis of
dihydrofuroflavonoids has really been developed. Recently, we reported an efficient method
for the synthesis of dihydrofurocoumarins,” which looked very promising for the synthesis of

dihydrofuroflavonoids. We now wish to report the success of this latter project.

Results and Discussion
Herein, we report our results on the palladium-catalyzed annulation of 1,3-dienes by o-
iodoacetoxyflavonoids that provides a very general and effective route to a wide variety of
dihydrofuroflavonoids. Using our previously developed reaction conditions,’ the scope and
limitations of this annulation (Scheme 1) have been studied using various o-

iodoacetoxyflavonoids and 1,3-dienes and representative examples are shown in Table 1.

Scheme 1

o R* R5 5mol % Pd(dba), |
R' )= 5 mol % dppe
L+ 4 20 0~ Ph
AcO 0~ “Ph R2 R3 2 equiv. Ag,CO3 R
4:114-dioxane /H,0 Rt R°
4 o R
100°C, 24 h SR
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Table 1. Synthesis of dihydrofuroflavonoids by palladium-catalyzed annulation.?

% yield®
entry flavonoid 1,3-diene product(s) (ratio of
isomers)
o (o]
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*The iodoacetoxyflavonoid (0.25 mmol), Pd(dba); (5 mol %, 0.0125 mmol), dppe (5 mol %, 0.0125 mmol),
Ag,CO; (0.5 mmol), the 1,3-diene (1.0 mmol), and 5 mL of a 4:1 1,4-dioxane/water mixture were stirred at 100
°C for 24 h. °All yields are isolated and based on a single run. °This experiment was performed on a 2.0 mmol

scale. %The diene used was 95% trans, trans.

Analogous to the annulation of o-iodoacetoxycoumarins,’ the annulation of various 1,3-
dienes by the flavone 4 has given the expected products 5-12 in 62 to 96% yields with
excellent regioselectivity (entries 1-8). Running the preparation of 12 on a 2.0 mmol scale
resulted in an even higher 90% yield (entry 8), indicating the utility of this procedure for
practical applications. The annulation of isoprene gave a 3:2 mixture of regioisomers 13a
and 13b in an 86% yield (entry 9). The analogous annulation of isoprene by o-iodophenol
has been shown to be mostly governed by steric factors, favoring addition to the less
hindered double bond and thus affording a 7:1 ratio of the corresponding annulation
products.®  The poor regioselectivity in entry 9 presumably results from the higher reactivity
of the cationic arylpalladium intermediate (see the later mechanistic discussion) towards the
more electron-rich disubstituted double bond, leading to a competition between steric and

electronic factors, which produces a mixture of the two isomeric products. The use of
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trans, trans-2,4-hexadiene (95% purity) gave a 20:1 ratio of isomers 14a and 14b in a 68%
yield (entry 10). The exclusive generation of E-stereochemistry in the newly formed carbon-
carbon double bond in products 7, 9, 10 and 14 is consistent with the intermediacy of a syn-
m-allylpalladium intermediate in these reactions.’

In order to broaden the scope of this reaction, similar reactions have been performed on
flavonoids 15, 18, 20, 23, 25, and 28. Steric hindrance in the vicinity of the iodo group in the
flavone 15 gave lower yields of the desired annulation products 16 and 17, presumably due to
slower oxidative addition to the Pd(0) catalyst or insertion of the diene (entries 11 and 12).

Since annulations of 1,3-dienes with electron-rich o-iodophenols have given lower yields
of the desired annulation products in previous studies in our group,8 the electron-rich
flavones 18, 20 and 23 presented a significant challenge to our methodology. Contrary
to our earlier results, using our current reaction conditions, the annulation of 2,3-dimethyl-
1,3-butadiene by flavone 18 gave a 90 % yield of the expected annulation product 19 (entry
13). Despite a longer reaction time (96 h), the annulation of 1,3-cyclohexadiene and 2,3-
dimethyl-1,3-butadiene by flavone 20, followed by a basic work-up, afforded annulated
products 21 and 22 in 60 % and 92 % yields respectively (entries 14 and 15). Our attempts to
accomplish a bis-annulation using electron-rich flavone 23 failed, presumably due to
significant steric hindrance at the C-6 position of the flavone moiety. Instead, this process
gave a 1:1 mixture of monoannulated product 24 and deiodinated monoannulated product 22
in a 72 % overall yield (entry 16).

The annulation of 1,3-cyclohexadiene and 2,3-dimethyl-1,3-butadiene by isoflavone 25
produced the desired annulation products 26 and 27 in 70 and 95 % yields respectively

(entries 17 and 18). Finally, the annulation of 2,3-dimethyl-1,3-butadiene by flavanone 28
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afforded the desired annulation product 29 in an 88 % yield. Running the latter reaction on a
2.0 mmol scale increased the isolated yield to 96 % (entry 19).

A proposed mechanism for this annulation process is shown in Scheme 2. Initial oxidative
addition of the iodoflavone 4 to palladium intermediate 30 generated in situ forms
arylpalladium intermediate 31. Abstraction of the iodide by silver carbonate leads to a
cationic intermediate 32, presumably stabilized by coordination to the neighboring acetyl
group. Next, complex 32 adds to the 1,3-diene in a cis-fashion to give o-allylpalladium
complex and then z-allylpalladium intermediate 33. Coordination of the acetoxy oxygen to

the palladium atom, leading to the formation of intermediate 34, restricts rotation of the C-C

bonds in the allyl moiety, and is,

Scheme 2
5 o)
0 o)
P 4 |
O | 4 S_Pd) T )J\o 0" “Ph
0 0" >Ph S P - p-Pd—| 31

Pd(dba
SN, g
Q 0~ “Ph N - )*9"?"‘"
34 " P
I
d Q ~0"0 0~ “Ph 32

P
P + 3
S = Solvent Qped

presumably, responsible for the high stereoselectivity when trans,trans-2,4-hexadiene is
utilized (Table 1, entry 10). Since no hydrolysis of the starting material 4 has been observed

under our reaction conditions, the deacylation of intermediate 34 is presumably accelerated



56

by coordination of the acetyl oxygen atom to the cationic palladium center. Finally, complex
35 undergoes reductive elimination to give the final product S and regenerates the palladium
catalyst 30.
Conclusions
In summary, we have developed an efficient palladium-catalyzed annulation of 1,3-
dienes by o-iodoacetoxyflavonoids, which affords good yields of dihydrofuroflavonoids.
The process is quite general, regio- and stereoselective, and a variety of o-

iodoacetoxyflavonoids, as well as symmetrical and unsymmetrical 1,3-dienes can be utilized.

EXPERIMENTAL SECTION

General. All 'H and >C NMR spectra were recorded at 400 and 100.5 MHz respectively.
All melting points are uncorrected. Thin layer chromatography (TLC) was performed using
commercially prepared 60 mesh silica gel plates (Whatman K6F), and visualization was
performed with UV light (254 nm) and an acidic KMnO, solution. Low resolution mass
spectra were recorded on a Finnigan TSQ700 triple quadripole mass spectrometer (Finnigan
MAT, San Jose, CA). High resolution mass spectra were recorded on a Kratos MS50TC
double focusing magnetic sector mass spectrometer using EI at 70 eV.

Reagents. Iodine, acetic anhydride, pyridine, 1,3-cyclohexadiene, 2,3-dimethyl-1,3-
butadiene, 4-methyl-1,3-pentadiene, and isoprene were purchased from Aldrich Chemical
Co., Inc. E-2-Methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene (a mixture of E and Z
isomers) and 2,4-dimethyl-1,3-pentadiene were purchased from Lancaster Co., Inc.
trans,trans-2,4-Hexadiene (95% pure) was purchased from ChemSamp Co., Inc. 5-

Hydroxyflavone, 6-hydroxyflavone, 7-hydroxyflavone, 7-hydroxyflavanone and 5,7-



57

dihydroxyflavone were purchased from Indofine Co., Inc. 7-Hydroxyisoflavone was
prepared according to a literature procedure.'”  E-1-Phenyl-1,3-butadiene and 1,5,5-
trimethyl-3-methylenecyclohexene were prepared by Wittig condensation according to a

literature procedure."!

Synthesis of o-iodoacetoxyflavonoeids

General iodination procedure A. Compounds 4, 15, 18, 20, 25 and 28 were prepared
by acylation of the corresponding o-iodohydroxyflavonoids, which in turn were prepared by
iodination of the corresponding hydroxyflavonoids according to the procedure for the
iodination of hydroxycoumarins12 indicated below. Iodine (5.0 mmol) dissolved in 50 mL of
aq KI solution was slowly added to a solution of the corresponding hydroxyflavonoid (5.0
mmol) in the minimal amount of aq ammonia solution at 0-5 °C. The resulting reaction
mixture was stirred for 2 h, left overnight in the refrigerator, and then acidified by 20% aq
HCI to pH = 4-5. The precipitated o-iodohydroxyflavonoid was filtered, washed with water
and dried in air. The resulting white solid was dissolved in 20 mL of acetic anhydride (a
minimal amount of DMF can be used as a co-solvent) in the presence of 1 mL of pyridine
and stirred for 24 h at 100 °C. Then the reaction mixture was quenched with chilled water
(caution, heat evolution!) and after 2 h extracted by CH,Cl,. The organic extract was washed
with water and aq NH4Cl solution, and dried over anhydrous MgSO4 for 4 h. After
evaporation of the CH,Cl,, the resulting white solid was purified by column chromatography
using silica gel as a stationary phase and 5:1 hexanes-ethyl acetate as the eluent. The

following compounds were prepared using this procedure.
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7-Acetoxy-8-iodoflavone (4). Obtained in a 90 % overall yield from 7-hydroxyflavone,
recrystallized from 1:1 ethanol-water: white solid, mp 180-182 °C; 'H NMR (CDCls) & 2.45
(s, 3H), 6.87 (s, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.50-7.60 (m, 3H), 8.00-8.10 (m, 2H), 8.24 (d,
J = 8.4 Hz, 1H); ®C NMR (CDCl) 6 21.5, 83.1, 107.4, 115.6, 120.7, 122.7, 126.9, 127.3,
129.5, 131.3, 132.3, 156.5, 164.3, 168.2, 177.5; IR (neat) 1765, 1647 cm™; HRMS m/z

405.9707 (calcd for C17H 1104, 405.9702).

6-Acetoxy-5-iodoflavone (15). Obtained in an 89 % overall yield from 6-
hydroxyflavone, recrystallized from 1:1 ethanol-water: white solid, mp 227-228 °C; '"H NMR
(CDCl3) 8 2.45 (s, 3H), 6.84 (s, 1H), 7.39 (d, J= 9.0 Hz, 1H), 7.50-7.58 (m, 3H), 7.62 (d, J =
9.0 Hz, 1H), 8.00-8.10 (m, 2H); *C NMR (CDCL) & 21.6, 88.2, 107.6, 120.1, 126.4, 127.3,
127.4, 129.3, 131.2, 132.1, 150.0, 154.7, 162.0, 169.1, 176.7; IR (neat) 1762, 1642 cm’™;

HRMS m/z 405.9800 (calcd for C;7H 1104, 405.9702).

7-Acetoxy-8-iodo-4’-methoxyflavone (18). Obtained in a 95 % overall yield from 7-
hydroxy-4’-methoxyflavone, recrystallized from 1:1 ethanol-water: white solid, mp 212-217
°C; '"H NMR (CDCl3) & 2.44 (s, 3H), 3.88 (s, 3H), 6.76 (s, 1H), 7.02 (d, J = 8.8 Hz, 2H), 7.17
(d, J= 8.4 Hz, 1H), 7.99 (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.4 Hz, 1H); >*C NMR (CDCl3) 5
21.5,55.8, 83.0, 105.8, 114.8, 120.4, 122.6, 123.5, 127.3, 128.6, 156.2, 156.4, 162.9, 164.2,

168.2, 177.3; IR (neat) 1771, 1645 cm’'; HRMS m/z 442.0284 (caled for C;gH;510s,

442.0277).

5,7-Diacetoxy-8-iodoflavanone (20). Obtained in an 80 % overall yield from 5,7-
dihydroxyflavanone, purified by column chromatography using 4:1 hexanes-ethyl acetate:

white solid, mp 192-194 °C; '"H NMR (CDCl) § 2.44 (s, 3H), 2.52 (s, 3H), 6.70 (s, 1H), 7.40
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(s, 1H), 7.45-7.60 (m, 3H), 7.80-7.90 (m, 2H); >°C NMR (CDCL) & 21.5, 21.6, 87.2, 108.7,
110.8, 116.1, 126.5, 129.4, 131.0, 132.2, 151.5, 154.6, 157.8, 162.8, 167.8, 168.5, 175.6; IR

(neat) 1777, 1645, 1602 cm™; HRMS m/z 463.9765 (caled for C19H;310, 463.9757).

7-Acetoxy-8-iodoisoflavone (25). Obtained in a 90 % overall yield from 7-
hydroxyisoflavone, recrystallized from 1:1 ethanol-water: white solid, mp 224-226 °C; 'H
NMR (CDCls3) 8 2.45 (s, 3H), 7.21 (d, J = 8.4 Hz, 1H), 7.40-7.48 (m, 3H), 7.52-7.60 (m, 2H),
8.13 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H); *C NMR (CDCls) & 21.5, 82.8, 120.7, 123.3, 125.8,
128.2, 128.8, 128.9, 129.1, 131.3, 153.5, 156.4, 156.5, 168.1, 175.5; IR (neat) 1766, 1591

cm™; HRMS m/z 405.9707 (calcd for Cy7H, 104, 405.9702).

7-Acetoxy-8-iodoflavanone (28). Obtained in an 85 % overall yield from 7-
hydroxyflavanone, purified by column chromatography using 4:1 hexanes-ethyl acetate:
white solid, mp 86-89 °C; 'H NMR (CDCl3) § 2.40 (s, 3H), 2.90-3.20 (m, 2H), 5.63 (dd, J =
12.0, 3.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 7.30-7.60 (m, 5H), 7.96 (d, J = 8.4 Hz, 1H); °C
NMR (CDCl;) & 21.6, 43.9, 80.3, 80.4, 83.8, 108.5, 117.0, 119.4, 126.1, 128.5, 129.0, 129.1,
138.3, 158.0, 161.9, 168.2, 190.5; IR (neat) 1766, 1690 cm™; HRMS m/z 407.9867 (calcd for

C17H13104, 407.9859).

General iodination procedure B. Compound 23 was prepared by acylation of the
corresponding o-iodohydroxyflavonoids, which in turn were prepared by iodination of the
corresponding hydroxyflavonoids using iodine monochloride. lodine monochloride (5.0
mmol) dissolved in 5 mL of CH,Cl, was slowly added to a solution of the corresponding
hydroxyflavonoid (5.0 mmol) in the minimal amount DMF at room temperature. The

resulting reaction mixture was stirred for 24 h and diluted with water (50 mL). The
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precipitated o-iodohydroxyflavonoid was filtered, washed with water and dried in air. The
resulting white solid was dissolved in 20 mL of acetic anhydride (a minimal amount of DMF
can be used as a co-solvent) in the presence of 1 mL of pyridine and stirred for 24 h at 100
°C. Then the reaction mixture was quenched with chilled water (caution, heat evolution!)
and after 2 h extracted by CH,Cl,. The organic extract was washed with water and aq NH4Cl
solution, and dried over anhydrous MgSQ,4 for 4 h. After evaporation of the CH,Cl,, the
resulting white solid was purified by column chromatography using silica gel as a stationary
phase and 5:1 hexanes-ethyl acetate as the eluent. The following compounds were prepared

using this procedure.

5,7-Diacetoxy-6,8-diiodoflavone (23). Obtained in a 93% overall yield from 5,7-
dihydroxyflavone, purified by column chromatography using 4:1 hexanes-ethyl acetate:
white solid, mp 218-220 °C; 'H NMR (CDCls) & 2.44 (s, 3H), 2.52 (s, 3H), 6.74 (s, 1H),
7.48-7.58 (m, 3H), 7.95-8.05 (m, 2H); >C NMR (CDCl3) & 21.5, 21.7, 80.8, 87.6, 108.2,
116.2, 126.9, 129.5, 129.6, 130.7, 132.5, 151.8, 156.4, 157.1, 163.2, 175.4; IR (neat) 1780,

1645 cm™; HRMS m/z 589.8728 (calcd for CioH)51,06, 589.8723).
Palladium-catalyzed annulation of 1,3-dienes by o-iodoacetoxyflavonoids.

General procedure. The o-iodoacetoxyflavonoid (0.25 mmol), Pd(dba), (5 mol %,
0.0125 mmol), dppe (5 mol %, 0.0125 mmol), Ag,CO; (0.5 mmol) and 1,4-dioxane (4 mL)
were stirred in a capped vial for 5 min, and then water (1 mL) and the 1,3-diene (1.0 mmol)
were added. The resulting reaction mixture was stirred at 100 °C for 24 h, cooled to room
temperature, filtered and the filtrate was concentrated to give a yellow residue. The resulting

residue was purified by column chromatography using silica gel as a solid phase and 4:1
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hexanes/ethyl acetate as the eluent to afford after solvent removal the final product. Solid
products were then recrystallized from 1:1 ethanol/water. The following new compounds

were prepared using this procedure.

2-Phenyl-7a,10,11,11a-tetrahydrobenzo[b]-4H-furo[2,3-k]-1-benzopyran-4-one (5).
Obtained in a 62 % yield: white solid, mp 122-124 °C; 'H NMR (CDCl3) & 1.63-1.76 (m,
1H), 2.05-2.33 (m, 3H), 3.81 (ddd, J=11.9, 8.0, 4.9 Hz, 1H), 5.18 (dt, J = 8.0, 1.7 Hz, 1H),
6.08 (dp, /=10.2, 2.0 Hz, 1H), 6.27 (dd, /= 10.2, 4.9 Hz, 1H), 6.75 (s, 1H), 6.88 (d, J = 8.6
Hz, 1H), 7.52-7.57 (m, 3H), 7.84-7.90 (m, 2H), 8.07 (d, J= 8.6 Hz, 1H); *C NMR (CDCl;)
8 23.3, 24.8, 38.7, 80.7, 107.7, 109.5, 115.6 (solvent impurity), 118.2, 118.5, 123.7, 126.2,
127.5, 129.4, 131.6, 132.3, 134.4, 154.2, 162.6, 164.6, 178.1; IR (neat) 1645, 1604 cm™;

HRMS m/z 316.1104 (calcd for C;;H;603, 316.1099).

Dihydrofuroflavone 6. Obtained in a 75 % yield: white solid, mp 110-114 °C; "H NMR
(CDCl3) 6 1.06 (s, 3H), 1.12 (s, 3H), 1.75 (s, 3H), 1.79 (d, J= 14.0 Hz, 1H), 1.84 (d, J=15.0
Hz, 1H), 1.92 (d, /= 15.0 Hz, 1H), 2.08 (s, J = 14.0 Hz, 1H), 3.35 (s, 2H), 5.86 (s, 1H), 6.75
(s, 1H), 6.82 (d, J = 8.4 Hz, 1H), 7.45-7.60 (m, 3H), 7.80-7.95 (m, 2H), 8.04 (d, /= 8.4 Hz,
1H); *C NMR (CDCls) & 24.1, 28.8, 29.9, 31.1, 40.5, 44.3, 48.4, 91.0, 107.5, 109.2, 113.4,
117.9, 122.6, 126.3, 127.3, 129.3, 131.6, 132.1, 138.5, 153.9, 162.5, 164.3, 178.3; IR (neat)

1635, 1604 cm™; HRMS m/z 372.1730 (caled for CasHpO3, 372.1725).

2-Phenyl-8-(E-2-phenylethenyl)-8,9-dihydro-4H-furo[2,3-A]-1-benzopyran-4-one (7).
Obtained in an 80 % yield: white solid mp 117-120 °C; '"H NMR (CDCls) & 3.38 (dd, J =
15.6, 8.0 Hz, 1H), 3.75 (dd, J= 15.6, 9.6 Hz, 1H), 5.62-5.67 (m, 1H), 6.41 (dd, J=15.6, 7.2

Hz, 1H), 6.75 (s, 1H), 6.77 (d, J = 15.6 Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 7.20-7.70 (m, 8H),
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7.85-7.88 (m, 2H), 8.07 (d, J = 8.8 Hz, 1H); *C NMR (CDCL) & 33.3, 86.1, 107.5, 109.0,
113.5, 115.6 (solvent impurity), 118.5, 126.3, 127.0, 127.3, 127.6, 128.6, 128.9, 129.3, 131.7,
132.0, 133.4, 136.0, 153.8, 162.6, 165.0, 178.2; IR (neat) 1640, 1604 cm™; HRMS m/z

366.1261 (calcd for Co5H 1303, 366.1256).

8-(2-Methyl-1-propenyl)-2-phenyl-8,9-dihydro-4 H-furo[2,3-4]-1-benzopyran-4-one
(8). Obtained in an 82% yield: white solid, mp 122-124 °C; 'H NMR (CDCl3) & 1.82 (s, 3H),
1.83 (s, 3H), 3.16 (dd, J=15.6, 8.0 Hz, 1H), 3.63 (dd, J=15.6, 9.2 Hz, 1H), 5.50 (d,J="7.8
Hz, 1H), 5.72 (q, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.83 (d, J = 8.4 Hz, 1H), 7.40-7.60 (m, 3H),
7.80-7.90 (m, 2H), 8.03 (d, J = 8.4 Hz, 1H); °C NMR (CDCl;) & 18.7, 26.1, 33.6, 82.6,
107.5,108.9, 113.8, 115.6 (solvent impurity), 118.2, 124.0, 126.2, 127.4, 129.2, 131.6, 132.1,
139.5, 153.7, 162.5, 165.1, 178.1; IR (neat) 1640, 1604 cm™; HRMS m/z 318.1262 (calcd for

C21Hi505, 318.1256).

8-(2-E-Buten-2-yl)-2-phenyl-8,9-dihydro-4H-furo[2,3-h]-1-benzopyran-4-one  (9).
Obtained in a 76 % yield: white solid, mp 125-128 °C; 'H NMR (CDCl3) § 1.65-1.72 (m,
6H), 3.16 (dd, J = 15.9, 8.2 Hz, 1H), 3.58 (dd, /= 15.9, 9.9 Hz, 1H), 5.42 (t, /= 9.0 Hz, 1H),
5.72 (q, J= 7.0 Hz, 1H), 6.75 (s, 1H), 6.88 (d, /= 8.6 Hz, 1H), 7.45-7.55 (m, 3H), 7.85-7.90
(m, 2H), 8.06 (d, J = 8.6 Hz, 1H); *C NMR (CDCl;) & 10.9, 13.5, 31.3, 90.7, 107.6, 108.7,
113.8, 118.3, 124.0, 126.3, 127.5, 1293, 131.6, 132.1, 133.9, 153.7, 162.5, 165.5, 178.1; IR

(neat) 1636, 1602 cm™; HRMS m/z 318.1262 (caled for Cp1H 503, 318.1256).

8-Methyl-2-phenyl-8-(E-1-propenyl)-8,9-dihydro-4 H-furo[2,3-4]-1-benzopyran-4-
one (10). Obtained in a 96 % yield: white solid, mp 136-138 °C; 'H NMR (CDCl;) § 1.65 (s,

3H), 1.74 (d, J= 5.9 Hz, 3H), 3.31 (d, /= 15.5 Hz, 1H), 3.45 (d, J= 15.5 Hz, 1H), 5.70-5.90
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(m, 2H), 6.76 (s, 1H), 6.87 (d, J = 8.6 Hz, 1H), 7.45-7.60 (m, 3H), 7.81-7.93 (m, 2H), 8.06
(d, J= 8.6 Hz, 1H); >C NMR (CDCls) & 18.0, 26.8, 39.3, 91.0, 107.5, 109.1, 113.3, 118.2,
125.4,126.2, 1274, 129.2, 131.6, 132.1, 134.1, 154.0, 162.5, 164.3, 178.2; IR (neat) 1640,

1600 cm™’; HRMS m/z 318.1262 (caled for CyH;503, 318.1256).

8-Methyl-8-(2-methyl-1-propenyl)-2-phenyl-8,9-dihydro-4 H-furo|2,3-h]-1-
benzopyran-4-one (11). Obtained in an 85 % yield: white solid, mp 120-122 °C; 'H NMR
(CDCl) 8 1.62 (s, 3H), 1.77-1.79 (m, 6H), 3.41 (d, J=15.6 Hz, 1H), 3.52 (d, /= 15.6 Hz,
1H), 5.60 (m, 1H), 6.75 (s, 1H), 6.87 (d, J = 8.6 Hz, 1H), 7.48-7.56 (m, 3H), 7.85-7.92 (m,
2H), 8.07 (d, J = 8.6 Hz, 1H); *C NMR (CDCl;) § 19.6, 27.0, 28.9, 40.9, 91.2, 107.6, 109.1,
113.4,118.2,126.3, 127.4, 129.3, 129.4, 131.6, 132.2, 136.7, 153.9, 162.4, 164.1, 178.1; IR

(neat) 1639, 1605 cm™'; HRMS m/z 332.1417 (calcd for CHy03, 332.1412).

8-Methyl-2-phenyl-8-(2-propenyl)-8,9-dihydro-4H-furo[2,3-k]-1-benzopyran-4-one
(12). Obtained in a 77 % yield: white solid, mp 148-151 °C; 'H NMR (CDCl3) 6 1.66 (s,
3H), 1.87 (s, 3H), 3.30 (d, /= 15.6 Hz, 1H), 3.50 (d, J = 15.6, 1H), 4.92 (s, 1H), 5.15 (s, 1H),
6.75 (s, 1H), 6.90 (d, J = 8.4 Hz, 1H), 7.45-7.55 (m, 3H), 7.85-7.90 (m, 2H), 8.08 (d, /= 8.4
Hz, 1H); C NMR (CDCl;) & 18.9, 26.5, 38.4, 93.3, 107.6, 109.0, 110.9, 113.2, 115.6 (from
solvent), 118.2, 126.3, 127.5, 129.2, 131.6, 132.1, 146.9, 153.9, 162.5, 164.4, 178.2; IR

(neat) 1640, 1599 cm™'; HRMS m/z 318.1262 (caled for Cy1Hi503, 318.1256).

2-Phenyl-8-(2-propenyl)-8,9-dihydro-4H-furo[2,3-h]-1-benzopyran-4-one (13a) and
8-cthenyl-8-methyl-2-phenyl-8,9-dihydro-4H-furo|2,3-k]-1-benzopyran-4-one (13b).

Compounds 13a and 13b were isolated as a 3:2 inseparable mixture of regioisomers
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respectively in an 86 % overall yield. The ratio of regioisomers was confirmed by '"H NMR
spectroscopy and HPLC. 13a: 'H NMR (CDCl3) 6 1.83 (s, 3H), 3.30 (dd, J = 16.0, 8.0 Hz,
1H), 3.65 (dd, J = 16.0, 10.0 Hz, 1H), 4.99 (s, 1H), 5.15 (s, 1H), 5.44 (t, J = 8.8 Hz, 1H),
6.12 (s, 1H), 6.90 (d, J = 8.7 Hz, 1H), 7.45-7.55 (m, 3H), 7.80-7.90 (m, 2H), 8.07 (d, J= 8.7
Hz, 1H). 13b: '"H NMR (CDCl;) & 1.67 (s, 3H), 3.33 (d, J = 15.7 Hz, 1H), 3.47 (d, J = 15.7
Hz, 1H), 5.18 (dd, /= 10.8, 0.7 Hz, 1H), 5.38 (dd, J=17.2, 0.7 Hz, 1H), 6.11 (dd, J=17.2,
10.8 Hz, 1H), 6.07 (s, 1H), 6.89 (d, J = 8.7 Hz, 1H), 7.45-7.55 (m, 3H), 7.80-7.90 (m, 2H),
8.07 (d, J= 8.7 Hz, 1H). The following *C NMR, IR and HRMS data were obtained on the
mixture of isomers: °C NMR (CDCL) § 17.3, 26.7, 31.8, 39.1, 88.1, 91.0, 107.6, 108.7,
109.0, 113.1, 113.2, 113.4, 113.8, 118.4, 118.5, 126.3, 127.5, 127.6, 129.3, 131.7, 132.0,
132.1, 140.9, 143.2, 153.7, 153.9, 162.4, 162.5, 164.2, 165.3, 178.1, 178.1; IR (neat) 1645,

1609 cm™; HRMS m/z 304.1105 (caled for CyoH 603, 304.1099)

9-Methyl-2-phenyl-8-(E-1-propenyl)-8,9-dihydro-4 H-furo[2,3-h]-1-benzopyran-4-
one (20:1 mixture of frans- and cis-isomers 14a and 14b respectively). Obtained as a white
solid in a 68 % overall yield. frans-Isomer 14a: '"H NMR (CDCl3) & 1.37 (d, J= 7.1 Hz, 3H),
1.84 (dd, J=6.5, 1.6 Hz, 3H), 3.74 (p, J= 7.8 Hz, 1H), 531 (t, J = 8.4 Hz, 1H), 5.76 (ddq, J
=15.3, 8.4, 1.6 Hz, 1H), 5.98 (dq, J = 15.3, 6.5 Hz, 1H), 6.75 (s, 1H), 6.87 (d, J = 8.5 Hz,
1H), 7.45-7.60 (m, 3H), 7.85-7.95 (m, 2H), 8.06 (d, J = 8.5 Hz, 1H). C NMR (CDCL) &
15.5, 18.3, 38.4, 89.8, 107.6, 109.2, 118.6, 119.5, 125.5, 126.2, 127.4, 129.3, 131.6, 132.2,
132.8,153.9, 162.5, 164.2, 178.1; IR (neat) 1640, 1604 cm™'; HRMS m/z 318.1262 (caled for
C21H30;, 318.1256). Cis-isomer 14b was detected as a minor isomer by 'H NMR

spectroscopy and HPLC chromatography.
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2-Phenyl-4¢,7,8,8a-tetrahydrobenzo[b]-4 H-furo[3,2-f]-1-benzopyran-4-one (16).
Obtained in a 25 % yield: yellow oil; '"H NMR (CDCl3) § 1.10-1.30 (m, 2H), 2.30-2.40 (m,
1H), 3.95-4.08 (m, 1H), 4.95-5.02 (m, 1H), 6.10-6.17 (m, 1H), 6.27-6.32 (m, 1H), 6.77 (s,
1H), 7.16 (d, J= 7.2 Hz, 1H), 7.40 (d, J= 7.2 Hz, 1H), 7.45-7.60 (m, 3H), 7.85-7.97 (m, 2H);
3C NMR (CDCly) 8 24.3, 25.0, 41.0, 80.4, 107.7, 116.3, 118.2, 121.4, 123.1, 126.5, 129.2,
130.4, 131.7, 132.2, 135.1, 151.8, 156.5, 163.2, 179.3; IR (neat) 1636, 1466 cm™'; HRMS m/z

316.1104 (calcd for C;1H1603, 316.1099).

6-Methyl-2-phenyl-6-(2-propenyl)- 5,6-dihydro-4H-furo[3,2-f]-1-benzopyran-4-one
(17). Obtained in a 16 % yield: yellow oil; "H NMR (CDCl;) § 1.60 (s, 3H), 1.86 (s, 3H),
3.65(dd, J=16.0, 0.8 Hz, 1H), 3.76 (dd, J=16.0, 0.8 Hz, 1H), 4.86 (s, 1H), 5.11 (s, 1H),
6.74 (s, 1H), 7.14 (d, J= 8.8 Hz, 1H), 7.38 (d, /= 8.8 Hz, 1H), 7.47-7.54 (m, 3H), 7.85-7.93
(m, 2H); *C NMR (CDCl3) & 19.0, 26.5, 29.9, 42.7, 92.3, 107.5, 110.2, 115.6 (from solvent),
118.0, 121.8, 124.3, 126.5, 129.2, 131.6, 132.2, 147.7, 151.5, 156.5, 163.4, 179.9; IR (neat)

1638, 1591 cm™'; HRMS m/z 318.1262 (caled for C;H;503, 318.1256).

2-(4-Methoxyphenyl)-8-methyl-8-(2-propenyl)-8,9-dihydro-4 H-furo|2,3-k]-1-
benzopyran-4-one (19). Obtained in a 90 % yield: white solid, mp 82-84 °C; 'H NMR
(CDCl;) 6 1.66 (s, 3H), 1.88 (s, 3H), 3.30 (d, J = 15.6 Hz, 1H), 3.46 (d, J = 15.6 Hz, 1H),
3.89 (s, 3H), 4.92 (s, 1H), 5.14 (s, 1H), 6.65 (s, 1H), 6.88 (d, /= 8.4 Hz, 1H), 7.01 (d,J=9.6
Hz, 2H), 7.82 (d, J = 9.6 Hz, 2H), 8.06 (d, J = 8.4 Hz, 1H); 3C NMR (CDCl;) & 18.9, 26.5,
38.4,55.7,93.1, 106.2, 108.8, 110.9, 113.0, 114.6, 115.6, 118.2, 124.4, 127.4, 127.9, 147.0,
153.8, 162.4, 164.2, 178.1; IR (neat) 1638, 1605 cm’; HRMS m/z 348.1370 (caled for

CyH004, 348.1362).
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S-Hydroxy-2-phenyl-7a,10,11,11a-tetrahydrobenzo[b]-4H-furo[2,3-h]-1-benzopyran-
4-one (21). The reaction mixture was stirred for 96 h and then NaOH (500 mg) was added.
The resulting mixture was stirred for 24 h, acidified with 5 % aq HCI and extracted with
CH,Cl,. The organic extract was washed with water and aq NH4Cl solution, and dried over
anhydrous MgSO;, for 4 h. After evaporation of the CH,Cl,, the resulting white solid was
purified by column chromatography using silica gel as a stationary phase and 5:1 hexanes-
ethyl acetate as the eluent. Obtained in a 60 % yield: white solid, mp 186-188 °C; 'H NMR
(CDCl3) 6 1.57-1.62 (m, 1H), 1.95-2.09 (m, 1H), 2.10-2.22 (m, 2H), 3.55-3.65 (m, 1H), 5.05-
5.12 (m, 1H), 5.95-6.05 (m, 1H), 6.20-6.28 (m, 1H), 6.44 (s, 1H), 6.66 (s, 1H), 7.45-7.60 (m,
3H), 7.85-7.95 (m, 2H); *C NMR (CDCl;) & 23.2, 23.9, 37.6, 81.2, 90.0, 106.0, 106.4,
113.8, 123.5, 126.5, 129.3, 131.6, 131.9, 135.0, 157.5, 158.3, 163.9, 165.9, 183.0; IR (neat)

3033, 1667, 1626 cm™; HRMS m/z 332.1054 (caled for Cy;Hi¢04, 332.1049).

5-Hydroxy-8-methyl-2-phenyl-8-(2-propenyl)-8,9-dihydro-4 H-furo[2,3-h]-1-
benzopyran-4-one (22). The preparation of this compound is similar to the preparation of
flavone 21. Obtained in a 92% yield: white solid, mp 90-92 °C; '"H NMR (CDCl3) & 1.62 (s,
3H), 1.84 (s, 3H), 3.04 (d, J = 15.6 Hz, 1H), 3.24 (d, J = 15.6 Hz, 1H), 4.89 (s, 1H), 5.10 (s,
1H), 6.47 (s, 1H), 6.66 (s, 1H), 7.50-7.55 (m, 3H), 7.85-7.90 (m, 2H); '*C NMR (CDCl;) &
18.9, 26.4, 37.5, 89.6, 93.6, 105.9, 106.1, 109.0, 110.7, 126.5, 129.3, 131.6, 131.9, 147.0,
157.1, 158.4, 163.8, 165.7, 182.8; IR (neat) 3200, 1669, 1625 cm™'; HRMS m/z 334.1212

(calcd for C1H 304, 334.1205).

S5-Hydroxy-6-iodo-8-methyl-2-phenyl-8-(2-propenyl)-8,9-dihydro-4 H-furo|2,3-h]-1-

benzopyran-4-one (24). The preparation of this compound is similar to the preparation of
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flavone 21. Obtained as an inseparable 2:1 mixture of 24 and 22 in a 72 % overall yield:
white solid, mp 92-95 °C; 'H NMR (CDCly) & 1.61 (s, 3H), 1.83 (s, 3H), 3.03 (d, J = 15.6
Hz, 1H), 3.24 (d, J = 15.6 Hz, 1H), 4.89 (s, 1H), 5.09 (s, 0.5 H), 6.47 (s, 1H), 7.50-7.55 (m,
3H), 7.85-7.90 (m, 2H); '>*C NMR (CDCLy) & 18.9, 26.4, 36.1, 37.5, 89.5, 93.6, 105.9, 106.1,
109.0, 110.7, 126.5, 129.3, 131.9, 147.0, 157.1, 163.9, 165.9, 182.8; IR (neat) 3200, 1667,

1627 cm™; MS m/z 333 (M*-I).

3-Phenyl-7a,10,11,11a-tetrahydrobenzo|[b]-4H-furo[2,3-h]-1-benzopyran-4-one (26).
Obtained in a 70 % yield: white solid, mp 100-103 °C; 'H NMR (CDCl3) 6 2.00-2.30 (m,
4H), 3.65-3.80 (m, 1H), 5.10-5.20 (m, 1H), 6.05-6.13 (m, 1H), 6.22-6.32 (m, 1H), 6.90 (d, J
= 8.4 Hz, 1H), 7.30-7.65 (m, 5H), 7.94 (s, 1H), 8.16 (d, J= 8.4 Hz, 1H); *C NMR (CDCl;) &
23.3, 24.5, 38.6, 80.8, 109.6, 118.1, 119.2, 123.6, 125.4, 128.3, 128.7, 129.3, 132.3, 134.6,
152.3, 154.1, 164.5, 176.0; IR (neat) 1643, 1446 cm™; HRMS m/z 316.1104 (calcd for

C21H1603, 316.1099).

8-Methyl-3-phenyl-8-(2-propenyl)-8,9-dihydro-4H-furo[2,3-h]-1-benzopyran-4-one
(27). Obtained in a 95 % yield: white solid, mp 86-88 °C; 'H NMR (CDCl) & 1.64 (s, 3H),
1.86 (s, 3H), 3.20 (d, J= 15.6 Hz, 1H), 3.42 (d, J = 15.6 Hz, 1H), 4.91 (s, 1H), 5.13 (s, 1H),
6.91 (d, J = 8.4 Hz, 1H), 7.35-7.48 (m, 3H), 7.50-7.60 (m, 2H), 7.91 (s, 1H), 8.18 (d, /= 8.4
Hz, 1H); *C NMR (CDCl3) & 18.9, 26.5, 38.4, 93.0, 109.2, 110.9, 113.0, 118.9, 125.4, 128.3,
128.6, 128.7, 129.3, 132.3, 146.7, 152.3, 154.0, 164.2, 175.9; IR (neat) 1644, 1628 cm’;

HRMS m/z 318.1262 (calcd for C2;H1303, 318.1256).

8-Methyl-2-phenyl-8-(2-propenyl)-2,3,8,9-tetrahydro-4 H-furo[2,3-k#]-1-benzopyran-

4-one (29). Obtained as a mixture of 2 diastereomers in an 88 % yield: yellow oil; 'H NMR
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(CDCl;) § 1.58 (s, 3H), 1.82 (s, 3H), 2.83 (m, 1H), 2.95-3.10 (m, 2H), 3.15-3.25 (m, 1H),
4.84-4.89 (m, 1H), 5.08 (s, 1H), 5.44-5.52 (m, 1H), 6.54 (d, J = 8.5 Hz, 1H), 7.30-7.60 (m,

5H), 7.84 (d, J = 8.5 Hz, 1H); '°C NMR (CDCl3) § 18.9, 26.5, 38.3, 44.7, 80.0, 93.1, 105.1,
110.6, 113.2, 115.4, 126.3, 128.9, 129.0, 139.2, 147.1, 159.0, 159.1, 166.3, 190.5; IR (neat)

1681, 1599 cm’™; HRMS m/z 320.1421 (caled for Co1HaO3, 320.1412).
Scanned 'H and °C spectra for compounds 4-29 are included in Appendix C (pp. 157-209).
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Abstract

The palladium-catalyzed annulation of 1,3-dienes by o-iodophenyl acetates provides an
efficient approach to biologically interesting dihydrobenzofurans. The annulation is believed
to proceed via (1) oxidative addition of the aryl iodide to Pd(0), (2) cis-addition of the
resulting arylpalladium complex to the 1,3-diene, (3) intramolecular coordination of the
phenolic oxygen to the Pd center, (4) hydrolysis of the acetyl group, and (5) reductive
elimination of Pd(0), which regenerates the catalyst. This reaction is very general,
regioselective, and stereoselective and a wide variety of terminal, cyclic and internal 1,3-
dienes, as well as electron-rich and electron-deficient o-iodophenyl acetates, can be utilized.

Introduction
Heteroannulation reactions involving z-allylpalladium intermediates are of great utility

for the synthesis of heterocyclic systems.! We have recently developed in our laboratories
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annulations of 1,3-dienes using o-iodoanilines (1),2 2-iodo-2-alkenoic acids (2)3 and o-

iodophenols (3),* which allow an elegant approach to heterocycles 4-6 respectively (egs 1-3).

5% Pd(OAc),

Ts
N
NHTs 5 NaHCO,
+ MR n-BU4NC| \_R (1)
4

| DMF, 60 °C

10% Pd(OAc),
1 20% D'BPF i 0
R’ COH 5 NaHCO; R
RZ n-BuNCI  R2 O (2)
2 DMF, 60 °C

e

R3
5% Pd(OAC), o
OH
. Py BNaHCO; % @)
n-BuyNClI R
6

3 DMF, 60 °C

Unfortunately, the latter annulation was limited to relatively unhindered 1,3-dienes and
electron-deficient o-iodophenols.* Our recent success in the synthesis of
dihydrofurocoumarins® and dihydrofuroflavonoids® via palladium-catalyzed annulation of
1,3-dienes by o-iodoacetoxycoumarins and o-iodoacetoxyflavonoids respectively prompted
us to explore the utility of this methodology for the synthesis of dihydrobenzofurans. We

now wish to report the success of this project.

Results and Discussion
We have studied the scope and limitations of the palladium-catalyzed annulation of 1,3-

dienes by various o-iodophenyl acetates (eq 1) under our previously developed reaction

conditions ( Table 1).>¢
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Table 1. Synthesis of dihydrobenzofurans by palladium-catalyzed annulation.?
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*The o-iodophenyl acetate (0.25 mmol), Pd(dba), (5 mol %, 0.0125 mmol), dppe (5 mol %, 0.0125 mmol),
Ag,CO; (0.5 mmol), the 1,3-diene (1.0 mmol), and S mL of a 4:1 1,4-dioxane/water mixture were stirred at 100
°C for 24 h. "All yields are isolated and based on a single run. o-Iodophenol was used as the starting material.
“The o-iodophenol (0.25 mmol), Pd(OAc), (5 mol %, 0.0125 mmol), diene (1.75 mmol), Na,CO; (0.5 mmol),
LiCl (0.5 mmol), and DMF (5 mL) were heated at 100 °C for 3d.

The annulation of 1,3-cyclohexadiene by aryl iodide 1 gave the desired annulation product
2 is a 72 % yield (entry 1). The use of 2,3-dimethyl-1,3-butadiene gave an even higher 92 %
yield of dihydrobenzofuran 3 (entry 2). At this point, we examined the necessity of
employing the acetyl group and compared our optimal reaction conditions to our previously
reported results using o-iodophenol.* The use of o-chloro- and o-bromophenyl acetates,
instead of aryl iodide 1, led to only a trace amount of the desired annulation product 3 and
virtually all starting materials were recovered. This could be due to slow oxidative addition
of the aryl chlorides and bromides to the Pd(0) complex generated in situ. Employing the
methyl, benzyl, pivaloyl and benzoyl groups on the phenolic oxygen did not lead to any

significant amount of the dihydrobenzofuran 3, presumably due to a slower rate of hydrolysis
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compared to the acetyl group. The annulation carried out under our standard reaction
conditions using o-iodophenol gave a much lower 48 % yield. ~ The yield of
dihydrobenzofuran 3 obtained using reaction conditions employed in our earlier o-
iodophenol annulation project was disappointingly low and the dehalogenated phenol was
isolated in a 70 % yield as a major side-product. These results clearly demonstrate the
superiority of our “optimal” reaction conditions. The use of trans,trans-2,4-hexadiene gives
exclusively trans-dihydrobenzofuran 4 in a 75 % yield (entry 3). The stereospecificity of the
latter annulation is presumably due to coordination of the phenolic oxygen to the palladium
center in the z-allylpalladium intermediate (see the later mechanistic discussion).

Next, a wide variety of electron-rich and electron-deficient aryl iodides were studied.
Annulation using various dienes and electron-deficient substrate 5 gave the desired
annulation products 6-9 in excellent yields (entries 4-7). We have also compared our
“optimal” reaction conditions with the procedure used in our earlier research (entry 4).*
Despite a less dramatic difference, compared to the electron-rich substrate 1 (entry 2), our
“optimal” reaction conditions have again provided the highest yield of annulation product 6.
The annulation of 2,3-dimethyl-1,3-butadiene by electron-deficient substrates 10 and 12 also
gave the desired dihydrobenzofurans 11 and 13 in 88 and 98 % yields respectively (entries 8
and 9). Although the acylated derivative of aryl halide 14 could not be prepared due to its
high propensity to hydrolyze, the phenol 14 itself gave the desired dihydrobenzofuran 15 in a
72 % yield (entry 10).

Since electron-rich aryl iodides failed to undergo annulation in our previous studies,! we
examined the effectiveness of our new methodology on substrates 16, 19, 21 and 23. The

annulation of 2,3-dimethyl-1,3-butadiene by aryl iodide 16 gave the desired annulation
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products 17 in a 58 % yield (entry 8). Surprisingly, employing 1-phenyl-1,3-butadiene lead
to formation of Heck product 18 in a 64 % yield (entry 11). The 1,3-dienes 1,3-
cyclohexadiene and 2,4-hexadiene gave inseparable, complex mixtures of what appear to be
Heck-type products.

The increased steric hindrance in substrate 19 seems to have little effect on the yield of
dihydrobenzofuran 20 (entry 13). Surprisingly, the remote acetyl group in bis-acylated 4-
iodoresorcinol 21 was not cleaved during the course of the reaction giving annulated product
22 in a 40 % yield (entry 14). The annulation of sterically hindered substrate 23 gave the
desired product 24 in a 48 % yield (entry 15).

A possible mechanism for this annulation process is shown in Scheme 2. Initial oxidative
addition of the iodoarene 1 to palladium intermediate 26 generated in siru forms
arylpalladium intermediate 27. Abstraction of the iodide by Ag,COj3 leads to a cationic
intermediate 28, presumably stabilized by coordination to the neighboring acetyl group.
Next, complex 28 adds to the 1,3-diene in a cis-fashion to give c-allylpalladium complex and
then z-allylpalladium intermediate 29. Coordination of the acetoxy oxygen to the palladium
atom, leading to the formation of intermediate 30, restricts rotation of the C-C bonds in the
allyl moiety, and is presumably responsible for the high stereoselectivity observed when
trans, trans-2,4-hexadiene is utilized (Table 1, entries 3 and 6). Since no hydrolysis of the
starting material 1 has been observed under our reaction conditions, the deacylation of
intermediate 31 is presumably accelerated by coordination of the acylated oxygen atom to the
cationic palladium center. Finally, complex 31 undergoes reductive elimination to give the

final product 32 with simultaneous regeneration of the palladium catalyst 26.
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Scheme 1
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Conclusions
In summary, we have developed an efficient palladium-catalyzed annulation of 1,3-
dienes by o-acetoxyiodobenzenes, which affords good yields of dihydrobenzofurans. The
process is quite general, regio- and stereoselective, and a large variety of electron-deficient
and electron-rich o-acetoxyiodobenzenes, as well as cyclic, terminal and internal 1,3-dienes

can be utilized.

EXPERIMENTAL SECTION
General. All 'H and “C NMR spectra were recorded at 400 and 100.5 MHz
respectively. All melting points are uncorrected. Thin layer chromatography (TLC) was
performed using commercially prepared 60 mesh silica gel plates (Whatman K6F), and
visualization was performed with UV light (254 nm) and an acidic KMnOjy solution. Low

resolution mass spectra were recorded on a Finnigan TSQ700 triple quadripole mass
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spectrometer (Finnigan MAT, San Jose, CA). High resolution mass spectra were recorded on
a Kratos MS50TC double focusing magnetic sector mass spectrometer using EI at 70 eV.

Reagents. Iodine, acetic anhydride, pyridine, 1,3-cyclohexadiene, and 2,3-dimethyl-1,3-
butadiene, o-iodophenol, methyl p-hydroxybenzoate, p-hydroxyacetophenone, p-
hydroxybenzaldehyde,  p-nitrophenol, = o-methoxyphenol, = m-methoxyphenol, p-
methoxyphenol, resorcinol and B-naphthol were purchased from Aldrich Chemical Co., Inc.
trans,trans-2,4-Hexadiene (95% pure) was purchased from ChemSamp Co., Inc. 2-
TIodophenol acetate (1),” 4-acetyl-2-iodophenol acetate (10),” 4-formyl-2-iodophenol acetate
(12),} 4-iodoresorcinol diacetate (21),” 1-iodo-2-naphthol acetate,'® 4-methoxy-2-
iodophenol,11 3-methoxy-2-iodophenol,!! E-1-phenyl-1,3-butadiene!? and 1,5,5-trimethyl-3-
methylenecyclohexene'? were prepared according to literature procedures.

General iodination/acylation procedure. Compounds 16, 21 and 23 were prepared by
direct acylation of the corresponding phenols. Compounds § and 7 were prepared by
acylation of the corresponding o-iodophenols, which in turn were prepared by iodination of
the corresponding phenols according to the procedure for the iodination of
hydroxycoumarins13 indicated below.

Iodine (5.0 mmol) dissolved in 50 mL of satd aq KI solution was slowly added to a
solution of the corresponding phenol (5.0 mmol) in the minimal amount of aq ammonia
solution at 0-5 °C. The resulting reaction mixture was stirred for 2 h, left overnight in the
refrigerator, and then acidified by 20 % aq HCI to pH = 4-5. The precipitated o-iodophenol
was extracted with ether, and the organic layer was washed with water. After evaporation of
the ether, the resulting solid was dissolved in 20 mL of acetic anhydride (a minimal amount

of DMF can be used as a co-solvent) in the presence of 1 mL of pyridine and stirred for 24 h
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at 100 °C. Then the reaction mixture was quenched with chilled water (caution, heat
evolution!) and after 2 h extracted by CH,Cl,. The organic extract was washed with water
and aq NH4Cl solution, and dried over anhydrous MgSOy for 4 h. After evaporation of the
CH,Cl,, the resulting white solid was purified by column chromatography using silica gel as
a stationary phase and 5:1 hexanes-ethyl acetate as the eluent. The following compounds
were prepared using this procedure.

Methyl 4-acetoxy-3-iodobenzoate (5). Obtained in a 96 % yield: white solid, mp 69-72
°C; '"HNMR (CDCl3) & 2.38 (s, 3H), 3.92 (s, 3H), 7.17 (d, J = 8.0 Hz, 1H), 8.04 (dd, J = 8.0,
2.0 Hz, 1H), 8.51 (d, J = 2.0 Hz, 1H); °*C NMR (CDCl3) 5 21.5, 52.8, 90.6, 123.1, 129.6,
131.1, 141.1, 155.0, 165.2, 168.3; IR (neat) 1788, 1766 cm™; HRMS m/z 319.9551 (calcd for
CoHolO3, 319.9546).

2-Iodo-4-nitrophenol (14). Obtained in a 98 % yield as a yellow solid; the 'H and >C
NMR spectra matched data reported in the literature.'*

2-Iodo-4-methoxyphenyl acetate (16). Obtained in a 65 % yield as a colorless solid, mp
89-91 °C; '"H NMR (CDCls) & 2.36 (s, 3H), 3.77 (s, 3H), 6.60 (dd, J = 8.8, 2.8 Hz, 1H), 6.68
(d, J=2.8 Hz, 1H), 7.65 (d, J= 8.8 Hz, 1H); *C NMR (CDCl;) § 21.5, 55.9, 79.1, 109.5,
114.4,139.4,152.1, 161.1, 168.8; IR (neat) 1766, 1588 cm™; HRMS m/z 291.9601 (calcd for
C10HolOy4, 291.9596).

2-Iodo-3-methoxyphenyl acetate (19). Obtained in a 63 % yield: yellow solid, mp 92-
94 °C; '"H NMR (CDCl3) § 2.37 (s, 3H), 3.90 (s, 3H), 6.65-6.77 (m, 2H), 7.32 (d, J = 8.0 Hz,
1H); "C NMR (CDCls) & 21.6, 56.0, 83.7, 108.6, 115.7, 130.0, 152.8, 159.9, 168.8; IR (neat)

1771, 1583 cm™; HRMS m/z 291.9601 (caled for CoHolO3, 291.9596).
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General procedure for the synthesis of dihydrobenzofurans. The o-iodophenyl
acetate (0.25 mmol), Pd(dba), (5 mol %, 0.0125 mmol), dppe (5 mol %, 0.0125 mmol),
Ag>COs (0.5 mmol) and 1,4-dioxane (4 mL) were stirred in a capped vial for 5 min, and then
water (1 mL) and the 1,3-diene (1.0 mmol) were added. The resulting reaction mixture was
stirred at 100 °C for 24 h, cooled to room temperature, filtered and the filtrate was
concentrated to give a yellow residue. The resulting residue was purified by column
chromatography using silica gel as a solid phase and 4:1 hexanes/ethyl acetate as the eluent
to afford after solvent removal the final product. The following new compounds were
prepared using this procedure.

1’,4,5,5°-Tetrahydrodibenzofuran (2). Obtained in a 72 % yield as a colorless oil; the
'H and *C NMR spectra matched the data reported in the literature.*

2-Methyl-2-(2-propenyl)-2,3-dihydrobenzofuran (3). Obtained in a 92 % yield as a
colorless oil; the 'H and '*C NMR spectra matched the data reported in the literature."®

3-Methyl-2-(E-1-propenyl)-2,3-dihydrobenzofuran (4). Obtained in a 75 % yield as a
colorless oil: 'H NMR (CDCl3) 8 1.16 (d, J=17.2 Hz, 3H), 1.77 (d, J= 8.0 Hz, 3H), 3.40-3.50
(m, 1H), 5.09 (t, J = 8.4 Hz, 1H), 5.60-5.70 (m, 1H), 5.83-5.90 (m, 1H), 6.78 (d, J= 7.6 Hz,
1H), 7.86 (t, J = 8.0 Hz, 1H), 7.08-7.15 (m, 2H); IR (neat) 3029, 1593 "'; HRMS m/z
174.1048 (calcd for C12H 140, 174.1045). This compound was sufficiently stable to get a
clean 3C spectra.

Methyl 2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran-S-carboxylate (6). Obtained
in a 100 % yield as a colorless oil: 'HNMR (CDCl3) 6 1.55 (s, 3H), 1.80 (dd, J= 1.2, 0.8 Hz,
3H), 3.02 (d, J=16.0 Hz, 1H), 3.24 (d, J = 16.0 Hz, 1H), 3.85 (s, 3H), 4.84 (q, /= 1.2 Hz,

1H), 5.06 (q, J=0.8 Hz, 1H), 6.78 (d, /= 8.4 Hz, 1H), 7.82 (d, /= 0.8 Hz, 1H), 7.86 (dd, J =
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8.4,0.8 Hz, 1H); BC NMR (CDCl3) 6 18.9, 26.3, 40.9, 52.1, 91.8, 109.4, 110.6, 122.6, 127.1,
127.2,131.4, 147.3, 163.2, 167.3; IR (neat) 1714, 1612 ™'; m/z 232.1102 (calcd for C14H;603,
232.1099).

Methyl 2-(E-2-phenylethenyl)-2,3-dihydrobenzofuran-5S-carboxylate (7). Obtained in
a 98 % yield as a colorless oil: 'HNMR (CDCl3) 8 3.11 (dd, J=15.6, 7.6 Hz, 1H), 3.48 (dd,
J=15.6,9.2 Hz, 1H), 3.88 (s, 3H), 5.42-5.70 (m, 1H), 6.35 (dd, /= 16.0, 7.6 Hz, 1H), 6.71
(d,J=16.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 7.24-7.45 (m, 3H), 7.85-7.95 (m, 2H); *C
NMR (CDCls) 8 35.9, 52.1, 85.0, 109.4, 123.0, 127.0, 127.3, 127.8, 128.5, 128.9, 129.2,
131.5,133.1, 136.2, 163.7, 167.2; IR (neat) 1713, 1615 "'; HRMS m/z 280.1103 (calcd for
CisH1603, 280.1099).

Methyl trans-3-methyl-2-(E-1-propenyl)-2,3-dihydrobenzofuran-5-carboxylate (8).
Obtained in a 77 % yield as a colorless oil: 'H NMR (CDCl;) 8 1.18 (d, J= 7.2 Hz, 3H), 1.78
(d, J=6.6 Hz, 3H), 3.45-3.55 (m, 1H), 3.87 (s, 3H), 5.19 (t, /= 8.8 Hz, 1H), 5.62 (dd, J =
16.0, 8.0 Hz, 1H), 5.88 (dq, J=16.0, 6.6 Hz, 1H), 6.78 (d, J=7.6 Hz, 1H), 7.80 (d,J=0.8
Hz, 1H), 7.82 (dd, J= 7.6, 0.8 Hz); C NMR (CDCl;) & 16.14, 18.16, 39.49, 52.07, 89.02,
109.4, 115.6, 122.9, 126.1, 126.2, 131.3, 131.9, 133.6, 163.0, 167.2; IR (neat) 1714, 1612
cm’; HRMS m/z 232.1102 (caled for Ci4H;603, 232.1099).

Dihydrobenzofuran 9. Obtained in a 60 % yield as a colorless oil: '"H NMR (CDCl;) 6
0.99 (s, 3H), 1.07 (s, 3H), 1.71 (s, 3H), 1.45-2.05 (m, 4H), 3.09 (s, 2H), 3.85 (s, 3H), 5.49 (s,
1H), 6.70 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 1.2 Hz, 1H), 7.84 (dd, J = 8.0, 1.2 Hz); ®C NMR
(CDCl3) 6 24.1, 29.0, 29.7, 31.0, 43.1, 44.4, 48.2, 52.0, 77.0, 77.3, 77.6, 89.4, 109.3, 122.2,
122.9, 126.9, 127.6, 131.3, 138.0, 163.0, 167.3; IR (neat) 1712, 1611 cm™'; HRMS m/z

286.1572 (calcd for C13H2203, 2861569)
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5-Acetyl-2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran (11). Obtained in an 88 %
yield as a colorless oil: '"H NMR (CDCl3) 6 1.57 (s, 3H), 1.82 (dd, /= 1.6, 0.8 Hz, 3H), 2.54
(s, 3H), 3.04 (d, /= 15.6 Hz, 1H), 3.27 (d, /= 15.6 Hz, 1H), 4.87 (q, /= 1.2 Hz, 1H), 5.08
(9, /=0.8 Hz, 1H), 6.81 (d, J=9.2 Hz, 1H), 7.78-7.85 (m, 2H); >C NMR (CDCl3) 6 18.9,
26.3,26.7,40.9,92.0, 109.3, 110.6, 125.9, 127.6, 130.7, 130.8, 147.2, 163.4, 196.9; IR (neat)
1674, 1606 cm™; HRMS m/z 216.1153 (calcd for Ci4H;60,, 216.1150).
2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran-5-carboxaldehyde (13). Obtained in
an 98 % yield as a colorless oil: 'H NMR (CDCls) § 1.59 (s, 3H), 1.82 (dd, J=1.2, 0.8 Hz,
3H), 3.07 (d, J=15.6 Hz, 1H), 3.29 (d, J=15.6 Hz, 1H), 4.88 (q, /= 1.2 Hz, 1H), 5.08 (g, J
= (.8 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 7.67-7.73 (m, 2H), 9.82 (s, IH); *C NMR (CDCl;)
518.9,26.3, 40.7,92.4, 110.0, 110.8, 126.3, 128.4, 130.5, 133.4, 147.0, 164.6, 190.9; IR
(neat) 2747, 1688, 1606 cm™'; HRMS m/z 202.0997 (calcd for C13H; 402, 202.0994).
2-Methyl-5-nitro-2-(2-propenyl)-2,3-dihydrobenzofuran (15). Obtained ina 72 %
yield as a colorless oil: 'HNMR (CDCl3) & 1.82 (dd, J= 1.2, 0.8 Hz, 3H), 1.83 (s, 3H), 3.09
(d, J=15.6 Hz, 1H), 3.32 (d, /= 15.6 Hz, 1H), 4.90 (q, /= 1.2 Hz, 1H), 5.08 (q, /= 0.8 Hz,
1H), 6.82 (dd, J = 8.8, 2.0 Hz, 1H), 8.05 (d, J=2.0 Hz, 1H), 8.11 (d, J= 8.8 Hz, 1H); “C
NMR (CDCl3) 6 18.9, 26.3, 40.7,93.3, 109.5, 111.1, 121.7, 126.1, 128.3, 141.9, 146.6,
164.5; IR (neat) 1598, 1516 cm™; HRMS m/z 219.0898 (calcd for C1,H;3NO3, 219.0895).
5-Methoxy-2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran (17). Obtained in a 58 %
yield as a colorless oil: 'H NMR (CDCl3) 8 1.56 (s, 3H), 1.81 (dd, J= 1.2, 0.8 Hz, 3H), 2.94
(d,J=14.8 Hz, 1H), 3.18 (d, /= 14.8 Hz, 1H), 3.77 (s, 3H), 4.83 (q, J = 1.2 Hz, 1H), 5.07

(d, J=0.8 Hz, 1H), 6.36-6.43 (m, 2H), 7.00 (d, J= 7.8 Hz, 1H); *C NMR (CDCl3) 5 19.2,
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26.3,41.0,55.7,91.1,96.4, 105.9, 110.1, 118.7, 125.2, 148.0, 160.3, 160.6; IR (neat) 1616,
1497 cm'l; HRMS m/z 204.1153 (calcd for Cj3H;60,, 204.1150).

4-Methoxy-2-(E,E-4-phenyl-1,3-butadienyl)phenyl acetate (18). Obtained in a 64 %
yield as a colorless oil: 'HNMR (CDCl3) 8 2.37 (s, 3H), 3.84 (s, 3H), 6.64 (d, J= 14 Hz,
1H), 6.67 (d, J= 14.4 Hz, 1H), 6.81 (dd, J= 8.8, 2.8 Hz, 1H), 6.90-7.10 (m, 3H), 7.12 (d,J =
2.8 Hz, 1H), 7.26 (dd, J = 8.8, 7.2 Hz, 1H), 7.35 (t, J= 7.2 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H);
13C NMR (CDCls) § 21.2, 55.9, 110.7, 114.4, 123.7, 125.8, 126.8, 128.1, 128.9, 129.3, 130.8,
131.7,134.2,137.3, 142.0, 157.6, 170.0; IR (neat) 1755, 1589 cm™'; HRMS m/z 294.1261
(calcd for C19H 303, 294.1256).

4-Methoxy-2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran (20). Obtained in a 67 %
yield as a colorless oil: 'H NMR (CDCls) 5 1.55 (s, 3H), 1.81 (dd, J = 1.6, 0.8 Hz, 3H), 2.96
(d,J=15.6 Hz, 1H), 3.18 (d, /= 15.6 Hz, 1H), 3.82 (s, 3H), 4.83 (q, /= 0.8 Hz, 1H), 5.09
(d,J=1.2 Hz, 1H), 6.40 (d, J= 8.0 Hz, 1H), 6.47 (d, /= 8.0 Hz, 1H), 7.09 (d, J = 8.0 Hz,
1H); C NMR (CDCl;) & 19.0, 26.4, 39.1, 55.6, 90.7, 102.8, 103.1, 110.0, 113.6, 129.3,
147.9, 156.8, 160.4; IR (neat) 1609, 1493 cm™; HRMS m/z 204.1153 (calcd for C13H;602,
204.1150).

6-Acetoxy-2-methyl-2-(2-propenyl)-2,3-dihydrobenzofuran (22). Obtained in a 40 %
yield as a colorless oil: 'HNMR (CDCl3) 0 1.55 (s, 3H), 1.81 (t, /= 0.8 Hz, 3H), 2.28 (s,
3H), 2.98 (d, J=15.6 Hz, 1H), 3.22 (d, J= 15.6 Hz, 1H), 4.84 (q, /= 0.8 Hz, 1H), 5.07 (d, J
= 0.8 Hz, 1H), 6.50-6.58 (m, 2H), 7.09 (d, J = 8.0 Hz, 1H); *C NMR (CDCls) & 19.0, 21.4,
26.3,41.1,91.5,103.9,110.3, 113.3, 124.4, 125.1, 147.6, 151.0, 159.9, 169.8; IR (neat)

1762, 1607 cm™; HRMS m/z 232.1102 (calcd for C14H;603, 232.1099).
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2-Methyl-2-(2-propenyl)-2,3-dihydrofuro[3,2-5b|naphthalene (24). Obtained ina 48 %
yield as a colorless oil: 'H NMR (CDCls) & 1.63 (s, 3H), 1.86 (s, 3H), 3.29 (d, J= 16.0 Hz,
1H), 3.51 (d, J= 16.0 Hz, 1H), 4.88 (s, 1H), 5.15 (s, 1H), 7.13 (d, J= 11.6 Hz, 1H), 7.23-
7.34 (m, 1H), 7.40-7.50 (m, 1H), 7.55 (d, J=11.6 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.80 (d,
J=28.8 Hz, 1H); C NMR (CDCl3) & 19.0, 26.6, 40.6, 91.0, 110.2, 112.5, 118.0, 122.8,
122.9, 126.8, 129.0, 129.2, 129.3, 131.2, 148.1, 156.6; IR (neat) 1631, 1465 cm™; HRMS m/z
224.1205 (caled for C6H;60, 224.1201).

Scanned 'H and C spectra for compounds 4-9, 11, 13, 15-20, 22, and 24 are included in
Appendix D (pp. 210-243).
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GENERAL CONCLUSIONS

In this dissertation a new efficient heteroannulation approach to various natural products
via palladium-catalyzed annulation of 1,3-dienes by iodoalkenols and acylated o-iodophenols
is presented. Developed methodology is very general and can be utilized for the synthesis of
various substituted dihydrofuroumarins, dihydrofuroflavones, and dihydrobenzofurans.

Chapter 1 describes the palladium-catalyzed annulation of 1,3-dienes by vinylic halides.
The presence of a fhydrogen in the vinylic halide results in fhydride elimination giving the
corresponding alkyne. The presence of a bulky group in the a-position of the vinylic halide
results in failure or deceleration of the annulation. A chloride source, pyridine base and
electron-rich phosphine are essential for this reaction. Despite the limited scope, our studies
provides a deeper insight into this process.

Chapter 2 is a publication that presents a synthesis of biologically active
dihydrofurocoumarins via palladium-catalyzed heteroannulation of 1,3-dienes by o-
iodoacetoxycoumarins. Preliminary studies using o-iodophenols revealed a major problem
with rapid dehalogenation. The presence of the acetyl group on the phenolic oxygen and the
use of silver carbonate as a base are crucial for the successful annulation. This reaction is
very general, regio- and stereoselective, and a wide variety of terminal, cyclic and internal
1,3-dienes can be utilized. Derivatization of the annulation products provides an efficient
approach to numerous analogues of natural products.

Chapter 3 is focused on synthesis of dihydrofuroflavonoids via palladium-catalyzed
annulation of 1,3-dienes. Dihydrofuroflavonoids occur commonly in plants and fruits and
are very important because of their pronounced biological properties. Despite significant

interest, no efficient, general method for the synthesis of dihydrofuroflavonoids has really
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been developed. Our annulation methodology provides a convenient and efficient approach
to a wide variety of functionalized flavonoids. This reaction is very general, regioselective,
and a wide variety of terminal, cyclic and internal 1,3-dienes can be utilized.

Chapter 4 concerns synthesis of dihydrobenzofurans via palladium-catalyzed annulation
of 1,3-dienes. The annulation of electron-rich o-iodophenols in earlier studies has been quite
problematic due to the undesired dehalogenation. The application of our methodology led to
the development of more efficient and general approach to dihydrobenzofurans. Although
electron-deficient o-iodophenyl acetates give higher yields of corresponding annulation
products than electron-rich ones o-iodophenyl acetates, this reaction is very general,
regioselective, stereoselective and a wide variety of terminal, cyclic and internal 1,3-dienes

can be utilized.
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APPENDIX A. CHAPTER 1 'H and *C SPECTRA
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APPENDIX B: CHAPTER 2 'H and *C SPECTRA
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